Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain
- Autores
- Jesús Medel Juárez, José de; Guevara López, Pedro; Flores Rueda, Alberto
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Consider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson (1990)). In this paper, the authors going to describe a good enough estimator considering a system with nonstationary time variant properties with respect to input and output qualities. The techniques used are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description illustrates the advantages with respect to others filters below cited.
Eje: IV - Workshop de procesamiento distribuido y paralelo
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Filtering
estimation
signal processing.
Simulation
Parallel processing
Distributed - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22497
Ver los metadatos del registro completo
id |
SEDICI_6720f3f0f07d1cd4d093688c063050e2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22497 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gainJesús Medel Juárez, José deGuevara López, PedroFlores Rueda, AlbertoCiencias InformáticasFilteringestimationsignal processing.SimulationParallel processingDistributedConsider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson (1990)). In this paper, the authors going to describe a good enough estimator considering a system with nonstationary time variant properties with respect to input and output qualities. The techniques used are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description illustrates the advantages with respect to others filters below cited.Eje: IV - Workshop de procesamiento distribuido y paraleloRed de Universidades con Carreras en Informática (RedUNCI)2004info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22497enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:02Zoai:sedici.unlp.edu.ar:10915/22497Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:03.268SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
spellingShingle |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain Jesús Medel Juárez, José de Ciencias Informáticas Filtering estimation signal processing. Simulation Parallel processing Distributed |
title_short |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title_full |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title_fullStr |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title_full_unstemmed |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title_sort |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
dc.creator.none.fl_str_mv |
Jesús Medel Juárez, José de Guevara López, Pedro Flores Rueda, Alberto |
author |
Jesús Medel Juárez, José de |
author_facet |
Jesús Medel Juárez, José de Guevara López, Pedro Flores Rueda, Alberto |
author_role |
author |
author2 |
Guevara López, Pedro Flores Rueda, Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Filtering estimation signal processing. Simulation Parallel processing Distributed |
topic |
Ciencias Informáticas Filtering estimation signal processing. Simulation Parallel processing Distributed |
dc.description.none.fl_txt_mv |
Consider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson (1990)). In this paper, the authors going to describe a good enough estimator considering a system with nonstationary time variant properties with respect to input and output qualities. The techniques used are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description illustrates the advantages with respect to others filters below cited. Eje: IV - Workshop de procesamiento distribuido y paralelo Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Consider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson (1990)). In this paper, the authors going to describe a good enough estimator considering a system with nonstationary time variant properties with respect to input and output qualities. The techniques used are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description illustrates the advantages with respect to others filters below cited. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22497 |
url |
http://sedici.unlp.edu.ar/handle/10915/22497 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615809507262464 |
score |
13.070432 |