Gravitational instabilities in Kerr spacetimes

Autores
Dotti, Gustavo; Gleiser, Reinaldo J.; Ranea Sandoval, Ignacio Francisco; Vucetich, Héctor
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we consider the possible existence of unstable axisymmetric modes in Kerr space times, resulting from exponentially growing solutions of the Teukolsky equation. We describe a transformation that casts the radial equation that results upon separation of variables in the Teukolsky equation, in the form of a Schr\"odinger equation, and combine the properties of the solutions of this equations with some recent results on the asymptotic behaviour of spin weighted spheroidal harmonics to prove the existence of an infinite family of unstable modes. Thus we prove that the stationary region beyond a Kerr black hole inner horizon is unstable under gravitational linear perturbations. We also prove that Kerr space-time with angular momentum larger than its square mass, which has a naked singularity, is unstable.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Ciencias Astronómicas
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/131538

id SEDICI_66ab70457119466b9c0f5874fedf9992
oai_identifier_str oai:sedici.unlp.edu.ar:10915/131538
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Gravitational instabilities in Kerr spacetimesDotti, GustavoGleiser, Reinaldo J.Ranea Sandoval, Ignacio FranciscoVucetich, HéctorCiencias AstronómicasGravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravityClassical general relativityPhysics of black holesGravitational wavesIn this paper we consider the possible existence of unstable axisymmetric modes in Kerr space times, resulting from exponentially growing solutions of the Teukolsky equation. We describe a transformation that casts the radial equation that results upon separation of variables in the Teukolsky equation, in the form of a Schr\"odinger equation, and combine the properties of the solutions of this equations with some recent results on the asymptotic behaviour of spin weighted spheroidal harmonics to prove the existence of an infinite family of unstable modes. Thus we prove that the stationary region beyond a Kerr black hole inner horizon is unstable under gravitational linear perturbations. We also prove that Kerr space-time with angular momentum larger than its square mass, which has a naked singularity, is unstable.Facultad de Ciencias Astronómicas y Geofísicas2008-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/131538enginfo:eu-repo/semantics/altIdentifier/issn/0264-9381info:eu-repo/semantics/altIdentifier/issn/1361-6382info:eu-repo/semantics/altIdentifier/arxiv/0805.4306info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/25/24/245012info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:12:11Zoai:sedici.unlp.edu.ar:10915/131538Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:12:11.758SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Gravitational instabilities in Kerr spacetimes
title Gravitational instabilities in Kerr spacetimes
spellingShingle Gravitational instabilities in Kerr spacetimes
Dotti, Gustavo
Ciencias Astronómicas
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
title_short Gravitational instabilities in Kerr spacetimes
title_full Gravitational instabilities in Kerr spacetimes
title_fullStr Gravitational instabilities in Kerr spacetimes
title_full_unstemmed Gravitational instabilities in Kerr spacetimes
title_sort Gravitational instabilities in Kerr spacetimes
dc.creator.none.fl_str_mv Dotti, Gustavo
Gleiser, Reinaldo J.
Ranea Sandoval, Ignacio Francisco
Vucetich, Héctor
author Dotti, Gustavo
author_facet Dotti, Gustavo
Gleiser, Reinaldo J.
Ranea Sandoval, Ignacio Francisco
Vucetich, Héctor
author_role author
author2 Gleiser, Reinaldo J.
Ranea Sandoval, Ignacio Francisco
Vucetich, Héctor
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
topic Ciencias Astronómicas
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
dc.description.none.fl_txt_mv In this paper we consider the possible existence of unstable axisymmetric modes in Kerr space times, resulting from exponentially growing solutions of the Teukolsky equation. We describe a transformation that casts the radial equation that results upon separation of variables in the Teukolsky equation, in the form of a Schr\"odinger equation, and combine the properties of the solutions of this equations with some recent results on the asymptotic behaviour of spin weighted spheroidal harmonics to prove the existence of an infinite family of unstable modes. Thus we prove that the stationary region beyond a Kerr black hole inner horizon is unstable under gravitational linear perturbations. We also prove that Kerr space-time with angular momentum larger than its square mass, which has a naked singularity, is unstable.
Facultad de Ciencias Astronómicas y Geofísicas
description In this paper we consider the possible existence of unstable axisymmetric modes in Kerr space times, resulting from exponentially growing solutions of the Teukolsky equation. We describe a transformation that casts the radial equation that results upon separation of variables in the Teukolsky equation, in the form of a Schr\"odinger equation, and combine the properties of the solutions of this equations with some recent results on the asymptotic behaviour of spin weighted spheroidal harmonics to prove the existence of an infinite family of unstable modes. Thus we prove that the stationary region beyond a Kerr black hole inner horizon is unstable under gravitational linear perturbations. We also prove that Kerr space-time with angular momentum larger than its square mass, which has a naked singularity, is unstable.
publishDate 2008
dc.date.none.fl_str_mv 2008-12-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/131538
url http://sedici.unlp.edu.ar/handle/10915/131538
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0264-9381
info:eu-repo/semantics/altIdentifier/issn/1361-6382
info:eu-repo/semantics/altIdentifier/arxiv/0805.4306
info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/25/24/245012
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783479633674240
score 12.982451