Unstable fields in Kerr spacetimes

Autores
Dotti, Gustavo; Gleiser, Reinaldo J.; Ranea Sandoval, Ignacio Francisco
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponentially in time and decays properly in the radial directions. These can be used as Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and linearized gravity field equations on these backgrounds, satisfying appropriate spatial boundary conditions and growing exponentially in time, as shown in detail for the Maxwell case. It is suggested that the existence of the unstable modes is related to the so-called time machine region, where the axial Killing vector field is timelike, and the Teukolsky equation, restricted to axially symmetric fields, changes its character from hyperbolic to elliptic.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Astronomía
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/132154

id SEDICI_00fde14108dbeaaa5485a9123543e34b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/132154
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Unstable fields in Kerr spacetimesDotti, GustavoGleiser, Reinaldo J.Ranea Sandoval, Ignacio FranciscoAstronomíaGravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravityClassical general relativityPhysics of black holesGravitational wavesWe show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponentially in time and decays properly in the radial directions. These can be used as Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and linearized gravity field equations on these backgrounds, satisfying appropriate spatial boundary conditions and growing exponentially in time, as shown in detail for the Maxwell case. It is suggested that the existence of the unstable modes is related to the so-called time machine region, where the axial Killing vector field is timelike, and the Teukolsky equation, restricted to axially symmetric fields, changes its character from hyperbolic to elliptic.Facultad de Ciencias Astronómicas y Geofísicas2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/132154enginfo:eu-repo/semantics/altIdentifier/issn/0264-9381info:eu-repo/semantics/altIdentifier/issn/1361-6382info:eu-repo/semantics/altIdentifier/arxiv/1111.5974info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/29/9/095017info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:12:12Zoai:sedici.unlp.edu.ar:10915/132154Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:12:12.68SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Unstable fields in Kerr spacetimes
title Unstable fields in Kerr spacetimes
spellingShingle Unstable fields in Kerr spacetimes
Dotti, Gustavo
Astronomía
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
title_short Unstable fields in Kerr spacetimes
title_full Unstable fields in Kerr spacetimes
title_fullStr Unstable fields in Kerr spacetimes
title_full_unstemmed Unstable fields in Kerr spacetimes
title_sort Unstable fields in Kerr spacetimes
dc.creator.none.fl_str_mv Dotti, Gustavo
Gleiser, Reinaldo J.
Ranea Sandoval, Ignacio Francisco
author Dotti, Gustavo
author_facet Dotti, Gustavo
Gleiser, Reinaldo J.
Ranea Sandoval, Ignacio Francisco
author_role author
author2 Gleiser, Reinaldo J.
Ranea Sandoval, Ignacio Francisco
author2_role author
author
dc.subject.none.fl_str_mv Astronomía
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
topic Astronomía
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves
dc.description.none.fl_txt_mv We show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponentially in time and decays properly in the radial directions. These can be used as Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and linearized gravity field equations on these backgrounds, satisfying appropriate spatial boundary conditions and growing exponentially in time, as shown in detail for the Maxwell case. It is suggested that the existence of the unstable modes is related to the so-called time machine region, where the axial Killing vector field is timelike, and the Teukolsky equation, restricted to axially symmetric fields, changes its character from hyperbolic to elliptic.
Facultad de Ciencias Astronómicas y Geofísicas
description We show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponentially in time and decays properly in the radial directions. These can be used as Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and linearized gravity field equations on these backgrounds, satisfying appropriate spatial boundary conditions and growing exponentially in time, as shown in detail for the Maxwell case. It is suggested that the existence of the unstable modes is related to the so-called time machine region, where the axial Killing vector field is timelike, and the Teukolsky equation, restricted to axially symmetric fields, changes its character from hyperbolic to elliptic.
publishDate 2012
dc.date.none.fl_str_mv 2012-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/132154
url http://sedici.unlp.edu.ar/handle/10915/132154
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0264-9381
info:eu-repo/semantics/altIdentifier/issn/1361-6382
info:eu-repo/semantics/altIdentifier/arxiv/1111.5974
info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/29/9/095017
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783480419057664
score 12.982451