Unstable fields in Kerr spacetimes
- Autores
- Dotti, Gustavo; Gleiser, Reinaldo J.; Ranea Sandoval, Ignacio Francisco
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponentially in time and decays properly in the radial directions. These can be used as Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and linearized gravity field equations on these backgrounds, satisfying appropriate spatial boundary conditions and growing exponentially in time, as shown in detail for the Maxwell case. It is suggested that the existence of the unstable modes is related to the so-called time machine region, where the axial Killing vector field is timelike, and the Teukolsky equation, restricted to axially symmetric fields, changes its character from hyperbolic to elliptic.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Astronomía
Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity
Classical general relativity
Physics of black holes
Gravitational waves - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/132154
Ver los metadatos del registro completo
| id |
SEDICI_00fde14108dbeaaa5485a9123543e34b |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/132154 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Unstable fields in Kerr spacetimesDotti, GustavoGleiser, Reinaldo J.Ranea Sandoval, Ignacio FranciscoAstronomíaGravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravityClassical general relativityPhysics of black holesGravitational wavesWe show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponentially in time and decays properly in the radial directions. These can be used as Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and linearized gravity field equations on these backgrounds, satisfying appropriate spatial boundary conditions and growing exponentially in time, as shown in detail for the Maxwell case. It is suggested that the existence of the unstable modes is related to the so-called time machine region, where the axial Killing vector field is timelike, and the Teukolsky equation, restricted to axially symmetric fields, changes its character from hyperbolic to elliptic.Facultad de Ciencias Astronómicas y Geofísicas2012-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/132154enginfo:eu-repo/semantics/altIdentifier/issn/0264-9381info:eu-repo/semantics/altIdentifier/issn/1361-6382info:eu-repo/semantics/altIdentifier/arxiv/1111.5974info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/29/9/095017info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:12:12Zoai:sedici.unlp.edu.ar:10915/132154Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:12:12.68SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Unstable fields in Kerr spacetimes |
| title |
Unstable fields in Kerr spacetimes |
| spellingShingle |
Unstable fields in Kerr spacetimes Dotti, Gustavo Astronomía Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity Classical general relativity Physics of black holes Gravitational waves |
| title_short |
Unstable fields in Kerr spacetimes |
| title_full |
Unstable fields in Kerr spacetimes |
| title_fullStr |
Unstable fields in Kerr spacetimes |
| title_full_unstemmed |
Unstable fields in Kerr spacetimes |
| title_sort |
Unstable fields in Kerr spacetimes |
| dc.creator.none.fl_str_mv |
Dotti, Gustavo Gleiser, Reinaldo J. Ranea Sandoval, Ignacio Francisco |
| author |
Dotti, Gustavo |
| author_facet |
Dotti, Gustavo Gleiser, Reinaldo J. Ranea Sandoval, Ignacio Francisco |
| author_role |
author |
| author2 |
Gleiser, Reinaldo J. Ranea Sandoval, Ignacio Francisco |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Astronomía Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity Classical general relativity Physics of black holes Gravitational waves |
| topic |
Astronomía Gravity in more than four dimensions, Kaluza-Klein theory, unified field theories; alternative theories of gravity Classical general relativity Physics of black holes Gravitational waves |
| dc.description.none.fl_txt_mv |
We show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponentially in time and decays properly in the radial directions. These can be used as Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and linearized gravity field equations on these backgrounds, satisfying appropriate spatial boundary conditions and growing exponentially in time, as shown in detail for the Maxwell case. It is suggested that the existence of the unstable modes is related to the so-called time machine region, where the axial Killing vector field is timelike, and the Teukolsky equation, restricted to axially symmetric fields, changes its character from hyperbolic to elliptic. Facultad de Ciencias Astronómicas y Geofísicas |
| description |
We show that both the interior region r < M − √M² − a² of a Kerr black hole and the a² > M² Kerr naked singularity admit unstable solutions of the Teukolsky equation for any value of the spin weight. For every harmonic number, there is at least one axially symmetric mode that grows exponentially in time and decays properly in the radial directions. These can be used as Debye potentials to generate solutions for the scalar, Weyl spinor, Maxwell and linearized gravity field equations on these backgrounds, satisfying appropriate spatial boundary conditions and growing exponentially in time, as shown in detail for the Maxwell case. It is suggested that the existence of the unstable modes is related to the so-called time machine region, where the axial Killing vector field is timelike, and the Teukolsky equation, restricted to axially symmetric fields, changes its character from hyperbolic to elliptic. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-04 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/132154 |
| url |
http://sedici.unlp.edu.ar/handle/10915/132154 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0264-9381 info:eu-repo/semantics/altIdentifier/issn/1361-6382 info:eu-repo/semantics/altIdentifier/arxiv/1111.5974 info:eu-repo/semantics/altIdentifier/doi/10.1088/0264-9381/29/9/095017 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783480419057664 |
| score |
12.982451 |