Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer orden
- Autores
- Negro, Pablo Ariel; Pons, Claudia Fabiana
- Año de publicación
- 2023
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La necesidad de integración neural-simbólica se hace evidente a medida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones datos de entrada que activan un conjunto de neuronas. Ordenando adecuadamente los pesos de entrada de una neurona, es posible acotar el espacio de búsqueda. Con base en esta observación, este trabajo tiene por objetivo presentar un método para extraer el patrón de reglas aprendido por una red neuronal entrenada feedforward, analizar sus propiedades y explicar estos patrones a través del uso de lógica de primer orden (LPO).
The need for neural-symbolic integration becomes evident as more complex problems are addressed, and that go beyond limited domain tasks such as classification. The search methods for extracting rules from neural networks work by sending input data combinations that activate a set of neurons. By properly ordering the input weights of a neuron, it is possible to narrow the search space. Based on this observation, this paper aims to present a method to extract the rule pattern learned by a feedforward trained neural network, analyze its properties and explain these patterns through the use of first-order logic (FOL).
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Deep Learning
Extracción de reglas
Inteligencia Artificial
Lógica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/165925
Ver los metadatos del registro completo
id |
SEDICI_64ab5dde33823573e3c0f34ed7867afd |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/165925 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer ordenRule extraction in trained feedforward neural networks with first-order logicNegro, Pablo ArielPons, Claudia FabianaCiencias InformáticasDeep LearningExtracción de reglasInteligencia ArtificialLógicaLa necesidad de integración neural-simbólica se hace evidente a medida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones datos de entrada que activan un conjunto de neuronas. Ordenando adecuadamente los pesos de entrada de una neurona, es posible acotar el espacio de búsqueda. Con base en esta observación, este trabajo tiene por objetivo presentar un método para extraer el patrón de reglas aprendido por una red neuronal entrenada feedforward, analizar sus propiedades y explicar estos patrones a través del uso de lógica de primer orden (LPO).The need for neural-symbolic integration becomes evident as more complex problems are addressed, and that go beyond limited domain tasks such as classification. The search methods for extracting rules from neural networks work by sending input data combinations that activate a set of neurons. By properly ordering the input weights of a neuron, it is possible to narrow the search space. Based on this observation, this paper aims to present a method to extract the rule pattern learned by a feedforward trained neural network, analyze its properties and explain these patterns through the use of first-order logic (FOL).Sociedad Argentina de Informática e Investigación Operativa2023-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf7-24http://sedici.unlp.edu.ar/handle/10915/165925spainfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/533info:eu-repo/semantics/altIdentifier/issn/2451-7496info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:15:49Zoai:sedici.unlp.edu.ar:10915/165925Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:15:50.084SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer orden Rule extraction in trained feedforward neural networks with first-order logic |
title |
Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer orden |
spellingShingle |
Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer orden Negro, Pablo Ariel Ciencias Informáticas Deep Learning Extracción de reglas Inteligencia Artificial Lógica |
title_short |
Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer orden |
title_full |
Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer orden |
title_fullStr |
Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer orden |
title_full_unstemmed |
Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer orden |
title_sort |
Extracción de reglas en redes neuronales feedforward entrenadas con lógica de primer orden |
dc.creator.none.fl_str_mv |
Negro, Pablo Ariel Pons, Claudia Fabiana |
author |
Negro, Pablo Ariel |
author_facet |
Negro, Pablo Ariel Pons, Claudia Fabiana |
author_role |
author |
author2 |
Pons, Claudia Fabiana |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Deep Learning Extracción de reglas Inteligencia Artificial Lógica |
topic |
Ciencias Informáticas Deep Learning Extracción de reglas Inteligencia Artificial Lógica |
dc.description.none.fl_txt_mv |
La necesidad de integración neural-simbólica se hace evidente a medida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones datos de entrada que activan un conjunto de neuronas. Ordenando adecuadamente los pesos de entrada de una neurona, es posible acotar el espacio de búsqueda. Con base en esta observación, este trabajo tiene por objetivo presentar un método para extraer el patrón de reglas aprendido por una red neuronal entrenada feedforward, analizar sus propiedades y explicar estos patrones a través del uso de lógica de primer orden (LPO). The need for neural-symbolic integration becomes evident as more complex problems are addressed, and that go beyond limited domain tasks such as classification. The search methods for extracting rules from neural networks work by sending input data combinations that activate a set of neurons. By properly ordering the input weights of a neuron, it is possible to narrow the search space. Based on this observation, this paper aims to present a method to extract the rule pattern learned by a feedforward trained neural network, analyze its properties and explain these patterns through the use of first-order logic (FOL). Sociedad Argentina de Informática e Investigación Operativa |
description |
La necesidad de integración neural-simbólica se hace evidente a medida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones datos de entrada que activan un conjunto de neuronas. Ordenando adecuadamente los pesos de entrada de una neurona, es posible acotar el espacio de búsqueda. Con base en esta observación, este trabajo tiene por objetivo presentar un método para extraer el patrón de reglas aprendido por una red neuronal entrenada feedforward, analizar sus propiedades y explicar estos patrones a través del uso de lógica de primer orden (LPO). |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/165925 |
url |
http://sedici.unlp.edu.ar/handle/10915/165925 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/JAIIO/article/view/533 info:eu-repo/semantics/altIdentifier/issn/2451-7496 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 7-24 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260662564159488 |
score |
13.13397 |