Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden

Autores
Negro, Pablo; Pons, Claudia Fabiana
Año de publicación
2024
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La necesidad de integración neural-simbólica se hace evidente a me-dida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones de datos de entrada que activan un conjunto de neuronas. Ordenando adecuada-mente los pesos de entrada de una neurona, es posible acotar el espacio de bús-queda. Con base en esta observación, este trabajo tiene por objetivo presentar un método para extraer el patrón de reglas aprendido por una red neuronal entrenada feedforward, analizar sus propiedades y explicar estos patrones a través del uso de lógica de primer orden (FOL)
The need for neural-symbolic integration becomes evident as more complex problems are addressed, and they go beyond limited domain tasks such as classification. Search methods for extracting rules from neural networks work by sending input data combinations that activate a set of neurons. By properly ordering the input weights of a neuron, it is possible to narrow down the search space. Based on this observation, this work aims to present a method for extracting the pattern of rules learned by a trained feedforward neural network, analyzing its properties, and explaining these patterns through the use of first-order logic (FOL).
Ponencia presentada en las 52 Jornadas Argentinas de Informática e Investigación Operativa (JAIIO 2023) (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023).
Materia
Ciencias de la Computación e Información
Aprendizaje profundo
Extracción de reglas
Inteligencia Artificial
lógica
Deep Learning
Rules Extraction
Artificial Intelligence
Logic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
CIC Digital (CICBA)
Institución
Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
OAI Identificador
oai:digital.cic.gba.gob.ar:11746/12470

id CICBA_7032d070611e7e87f55869f904d9b55c
oai_identifier_str oai:digital.cic.gba.gob.ar:11746/12470
network_acronym_str CICBA
repository_id_str 9441
network_name_str CIC Digital (CICBA)
spelling Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer ordenNegro, PabloPons, Claudia FabianaCiencias de la Computación e InformaciónAprendizaje profundoExtracción de reglasInteligencia ArtificiallógicaDeep LearningRules ExtractionArtificial IntelligenceLogicLa necesidad de integración neural-simbólica se hace evidente a me-dida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones de datos de entrada que activan un conjunto de neuronas. Ordenando adecuada-mente los pesos de entrada de una neurona, es posible acotar el espacio de bús-queda. Con base en esta observación, este trabajo tiene por objetivo presentar un método para extraer el patrón de reglas aprendido por una red neuronal entrenada feedforward, analizar sus propiedades y explicar estos patrones a través del uso de lógica de primer orden (FOL)The need for neural-symbolic integration becomes evident as more complex problems are addressed, and they go beyond limited domain tasks such as classification. Search methods for extracting rules from neural networks work by sending input data combinations that activate a set of neurons. By properly ordering the input weights of a neuron, it is possible to narrow down the search space. Based on this observation, this work aims to present a method for extracting the pattern of rules learned by a trained feedforward neural network, analyzing its properties, and explaining these patterns through the use of first-order logic (FOL).Ponencia presentada en las 52 Jornadas Argentinas de Informática e Investigación Operativa (JAIIO 2023) (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023).2024info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttps://digital.cic.gba.gob.ar/handle/11746/12470spainfo:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/reponame:CIC Digital (CICBA)instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Airesinstacron:CICBA2025-09-04T09:43:30Zoai:digital.cic.gba.gob.ar:11746/12470Institucionalhttp://digital.cic.gba.gob.arOrganismo científico-tecnológicoNo correspondehttp://digital.cic.gba.gob.ar/oai/snrdmarisa.degiusti@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:94412025-09-04 09:43:31.261CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Airesfalse
dc.title.none.fl_str_mv Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden
title Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden
spellingShingle Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden
Negro, Pablo
Ciencias de la Computación e Información
Aprendizaje profundo
Extracción de reglas
Inteligencia Artificial
lógica
Deep Learning
Rules Extraction
Artificial Intelligence
Logic
title_short Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden
title_full Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden
title_fullStr Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden
title_full_unstemmed Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden
title_sort Extracción de reglas de redes neuronales feedforward entrenadas con lógica de primer orden
dc.creator.none.fl_str_mv Negro, Pablo
Pons, Claudia Fabiana
author Negro, Pablo
author_facet Negro, Pablo
Pons, Claudia Fabiana
author_role author
author2 Pons, Claudia Fabiana
author2_role author
dc.subject.none.fl_str_mv Ciencias de la Computación e Información
Aprendizaje profundo
Extracción de reglas
Inteligencia Artificial
lógica
Deep Learning
Rules Extraction
Artificial Intelligence
Logic
topic Ciencias de la Computación e Información
Aprendizaje profundo
Extracción de reglas
Inteligencia Artificial
lógica
Deep Learning
Rules Extraction
Artificial Intelligence
Logic
dc.description.none.fl_txt_mv La necesidad de integración neural-simbólica se hace evidente a me-dida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones de datos de entrada que activan un conjunto de neuronas. Ordenando adecuada-mente los pesos de entrada de una neurona, es posible acotar el espacio de bús-queda. Con base en esta observación, este trabajo tiene por objetivo presentar un método para extraer el patrón de reglas aprendido por una red neuronal entrenada feedforward, analizar sus propiedades y explicar estos patrones a través del uso de lógica de primer orden (FOL)
The need for neural-symbolic integration becomes evident as more complex problems are addressed, and they go beyond limited domain tasks such as classification. Search methods for extracting rules from neural networks work by sending input data combinations that activate a set of neurons. By properly ordering the input weights of a neuron, it is possible to narrow down the search space. Based on this observation, this work aims to present a method for extracting the pattern of rules learned by a trained feedforward neural network, analyzing its properties, and explaining these patterns through the use of first-order logic (FOL).
Ponencia presentada en las 52 Jornadas Argentinas de Informática e Investigación Operativa (JAIIO 2023) (Universidad Nacional de Tres de Febrero, 4 al 8 de septiembre de 2023).
description La necesidad de integración neural-simbólica se hace evidente a me-dida que se abordan problemas más complejos, y que van más allá de tareas de dominio limitadas como lo es la clasificación. Los métodos de búsqueda para la extracción de reglas de las redes neuronales funcionan enviando combinaciones de datos de entrada que activan un conjunto de neuronas. Ordenando adecuada-mente los pesos de entrada de una neurona, es posible acotar el espacio de bús-queda. Con base en esta observación, este trabajo tiene por objetivo presentar un método para extraer el patrón de reglas aprendido por una red neuronal entrenada feedforward, analizar sus propiedades y explicar estos patrones a través del uso de lógica de primer orden (FOL)
publishDate 2024
dc.date.none.fl_str_mv 2024
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv https://digital.cic.gba.gob.ar/handle/11746/12470
url https://digital.cic.gba.gob.ar/handle/11746/12470
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1514-6774
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:CIC Digital (CICBA)
instname:Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron:CICBA
reponame_str CIC Digital (CICBA)
collection CIC Digital (CICBA)
instname_str Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
instacron_str CICBA
institution CICBA
repository.name.fl_str_mv CIC Digital (CICBA) - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
repository.mail.fl_str_mv marisa.degiusti@sedici.unlp.edu.ar
_version_ 1842340424990064640
score 12.885934