On the Evaluation of Similarity for Time Series
- Autores
- Ojeda, Silvia María; Bellassai Gauto, Juan Carlos; Landi, Macos Alejandro
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The search and detection of similarities is a central problem in the analysis and processing of time series databases. The issue is relevant, for example, in problems of classification of time series and in situations in which a predictive process must be evaluated, or when it is necessary to compare two or more prediction methods. Many of the works oriented to the evaluation of similarity in time series have focused on the notion of dynamic distortion, with good results in the quantification of similarity, but with a high computational cost. As a result, the interest in the development of new similarity indexes and the improvement of existing similarity measures remains in force; even more considering the remarkable increase and availability of time series databases and the urgency that applications demand daily. The expectation about the new proposals is that they are able to quantify quickly and not only effectively the similarity between time series, in response to different application problems. Therefore, an interesting alternative is to investigate about simple mathematical formulation measures, which have proven useful for measuring the similarity in two-dimensional scenarios and assess their adaptation to measure similarity be-tween time series. One of the proposals to measure similarity between two-dimensional scenarios is the SSIM similarity index, defined to quantify similarity between digital images. The development was presented by Wang et al. in 2004 and has shown excellent results to evaluate the similarity between two digital images. SSIM has the advantage over other proposals, its simple mathematical formulation. In effect, this index is calculated from the product of three factors: the luminance, the contrast and the correlation between the images to be compared. These factors represent, respectively, simple relations between the means, the contrast and the correlation between the images. In this work, we adapted the SSIM index for images to the problem of evaluating the similarity in time series, obtaining a temporal similarity index called SSIMT. The results presented here showed that although the SSIM index was developed to measure similarity between images, it can be used as an index of similarity between time series (in this case called SSIMT). SSIMT and the two robust versions of the SSIMT proposed (SSIMM and SSIMR), showed better results than the D index developed by Chouakria and Nagabhushan [7], which is an index with a high performance.
Sociedad Argentina de Informática - Materia
-
Ciencias Informáticas
Time series
Classification
Clustering - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/114928
Ver los metadatos del registro completo
id |
SEDICI_638f318ef2af913ea615de19928a8400 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/114928 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
On the Evaluation of Similarity for Time SeriesOjeda, Silvia MaríaBellassai Gauto, Juan CarlosLandi, Macos AlejandroCiencias InformáticasTime seriesClassificationClusteringThe search and detection of similarities is a central problem in the analysis and processing of time series databases. The issue is relevant, for example, in problems of classification of time series and in situations in which a predictive process must be evaluated, or when it is necessary to compare two or more prediction methods. Many of the works oriented to the evaluation of similarity in time series have focused on the notion of dynamic distortion, with good results in the quantification of similarity, but with a high computational cost. As a result, the interest in the development of new similarity indexes and the improvement of existing similarity measures remains in force; even more considering the remarkable increase and availability of time series databases and the urgency that applications demand daily. The expectation about the new proposals is that they are able to quantify quickly and not only effectively the similarity between time series, in response to different application problems. Therefore, an interesting alternative is to investigate about simple mathematical formulation measures, which have proven useful for measuring the similarity in two-dimensional scenarios and assess their adaptation to measure similarity be-tween time series. One of the proposals to measure similarity between two-dimensional scenarios is the SSIM similarity index, defined to quantify similarity between digital images. The development was presented by Wang et al. in 2004 and has shown excellent results to evaluate the similarity between two digital images. SSIM has the advantage over other proposals, its simple mathematical formulation. In effect, this index is calculated from the product of three factors: the luminance, the contrast and the correlation between the images to be compared. These factors represent, respectively, simple relations between the means, the contrast and the correlation between the images. In this work, we adapted the SSIM index for images to the problem of evaluating the similarity in time series, obtaining a temporal similarity index called SSIMT. The results presented here showed that although the SSIM index was developed to measure similarity between images, it can be used as an index of similarity between time series (in this case called SSIMT). SSIMT and the two robust versions of the SSIMT proposed (SSIMM and SSIMR), showed better results than the D index developed by Chouakria and Nagabhushan [7], which is an index with a high performance.Sociedad Argentina de Informática2020-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/114928enginfo:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/asai/ASAI-17.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7585info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:26:45Zoai:sedici.unlp.edu.ar:10915/114928Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:26:45.693SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
On the Evaluation of Similarity for Time Series |
title |
On the Evaluation of Similarity for Time Series |
spellingShingle |
On the Evaluation of Similarity for Time Series Ojeda, Silvia María Ciencias Informáticas Time series Classification Clustering |
title_short |
On the Evaluation of Similarity for Time Series |
title_full |
On the Evaluation of Similarity for Time Series |
title_fullStr |
On the Evaluation of Similarity for Time Series |
title_full_unstemmed |
On the Evaluation of Similarity for Time Series |
title_sort |
On the Evaluation of Similarity for Time Series |
dc.creator.none.fl_str_mv |
Ojeda, Silvia María Bellassai Gauto, Juan Carlos Landi, Macos Alejandro |
author |
Ojeda, Silvia María |
author_facet |
Ojeda, Silvia María Bellassai Gauto, Juan Carlos Landi, Macos Alejandro |
author_role |
author |
author2 |
Bellassai Gauto, Juan Carlos Landi, Macos Alejandro |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Time series Classification Clustering |
topic |
Ciencias Informáticas Time series Classification Clustering |
dc.description.none.fl_txt_mv |
The search and detection of similarities is a central problem in the analysis and processing of time series databases. The issue is relevant, for example, in problems of classification of time series and in situations in which a predictive process must be evaluated, or when it is necessary to compare two or more prediction methods. Many of the works oriented to the evaluation of similarity in time series have focused on the notion of dynamic distortion, with good results in the quantification of similarity, but with a high computational cost. As a result, the interest in the development of new similarity indexes and the improvement of existing similarity measures remains in force; even more considering the remarkable increase and availability of time series databases and the urgency that applications demand daily. The expectation about the new proposals is that they are able to quantify quickly and not only effectively the similarity between time series, in response to different application problems. Therefore, an interesting alternative is to investigate about simple mathematical formulation measures, which have proven useful for measuring the similarity in two-dimensional scenarios and assess their adaptation to measure similarity be-tween time series. One of the proposals to measure similarity between two-dimensional scenarios is the SSIM similarity index, defined to quantify similarity between digital images. The development was presented by Wang et al. in 2004 and has shown excellent results to evaluate the similarity between two digital images. SSIM has the advantage over other proposals, its simple mathematical formulation. In effect, this index is calculated from the product of three factors: the luminance, the contrast and the correlation between the images to be compared. These factors represent, respectively, simple relations between the means, the contrast and the correlation between the images. In this work, we adapted the SSIM index for images to the problem of evaluating the similarity in time series, obtaining a temporal similarity index called SSIMT. The results presented here showed that although the SSIM index was developed to measure similarity between images, it can be used as an index of similarity between time series (in this case called SSIMT). SSIMT and the two robust versions of the SSIMT proposed (SSIMM and SSIMR), showed better results than the D index developed by Chouakria and Nagabhushan [7], which is an index with a high performance. Sociedad Argentina de Informática |
description |
The search and detection of similarities is a central problem in the analysis and processing of time series databases. The issue is relevant, for example, in problems of classification of time series and in situations in which a predictive process must be evaluated, or when it is necessary to compare two or more prediction methods. Many of the works oriented to the evaluation of similarity in time series have focused on the notion of dynamic distortion, with good results in the quantification of similarity, but with a high computational cost. As a result, the interest in the development of new similarity indexes and the improvement of existing similarity measures remains in force; even more considering the remarkable increase and availability of time series databases and the urgency that applications demand daily. The expectation about the new proposals is that they are able to quantify quickly and not only effectively the similarity between time series, in response to different application problems. Therefore, an interesting alternative is to investigate about simple mathematical formulation measures, which have proven useful for measuring the similarity in two-dimensional scenarios and assess their adaptation to measure similarity be-tween time series. One of the proposals to measure similarity between two-dimensional scenarios is the SSIM similarity index, defined to quantify similarity between digital images. The development was presented by Wang et al. in 2004 and has shown excellent results to evaluate the similarity between two digital images. SSIM has the advantage over other proposals, its simple mathematical formulation. In effect, this index is calculated from the product of three factors: the luminance, the contrast and the correlation between the images to be compared. These factors represent, respectively, simple relations between the means, the contrast and the correlation between the images. In this work, we adapted the SSIM index for images to the problem of evaluating the similarity in time series, obtaining a temporal similarity index called SSIMT. The results presented here showed that although the SSIM index was developed to measure similarity between images, it can be used as an index of similarity between time series (in this case called SSIMT). SSIMT and the two robust versions of the SSIMT proposed (SSIMM and SSIMR), showed better results than the D index developed by Chouakria and Nagabhushan [7], which is an index with a high performance. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/114928 |
url |
http://sedici.unlp.edu.ar/handle/10915/114928 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/asai/ASAI-17.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7585 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616145974329344 |
score |
13.070432 |