Generative AI in Higher Education: Evidence from an Elite College

Autores
Contractor, Zara; Reyes, Germán J.
Año de publicación
2025
Idioma
inglés
Tipo de recurso
documento de trabajo
Estado
versión enviada
Descripción
Generative AI is transforming higher education, yet systematic evidence on student adoption remains limited. Using novel survey data from a selective U.S. college, we document over 80 percent of students using AI academically within two years of ChatGPT’s release. Adoption varies across disciplines, demographics, and achievement levels, highlighting AI’s potential to reshape educational inequalities. Students predominantly use AI for augmenting learning (e.g., explanations, feedback), but also to automate tasks (e.g., essay generation). Positive perceptions of AI’s educational benefits strongly predict adoption. Institutional policies can influence usage patterns but risk creating unintended disparate impacts across student groups due to uneven compliance.
Centro de Estudios Distributivos, Laborales y Sociales
Materia
Ciencias Económicas
artificial intelligence
education
analysis of education
technological change
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/187092

id SEDICI_604f77b236d3c6bc8597cf648721766d
oai_identifier_str oai:sedici.unlp.edu.ar:10915/187092
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Generative AI in Higher Education: Evidence from an Elite CollegeContractor, ZaraReyes, Germán J.Ciencias Económicasartificial intelligenceeducationanalysis of educationtechnological changeGenerative AI is transforming higher education, yet systematic evidence on student adoption remains limited. Using novel survey data from a selective U.S. college, we document over 80 percent of students using AI academically within two years of ChatGPT’s release. Adoption varies across disciplines, demographics, and achievement levels, highlighting AI’s potential to reshape educational inequalities. Students predominantly use AI for augmenting learning (e.g., explanations, feedback), but also to automate tasks (e.g., essay generation). Positive perceptions of AI’s educational benefits strongly predict adoption. Institutional policies can influence usage patterns but risk creating unintended disparate impacts across student groups due to uneven compliance.Centro de Estudios Distributivos, Laborales y Sociales2025-11info:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/submittedVersionDocumento de trabajohttp://purl.org/coar/resource_type/c_8042info:ar-repo/semantics/documentoDeTrabajoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/187092enginfo:eu-repo/semantics/altIdentifier/issn/1853-0168info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-26T10:29:14Zoai:sedici.unlp.edu.ar:10915/187092Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-26 10:29:14.963SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Generative AI in Higher Education: Evidence from an Elite College
title Generative AI in Higher Education: Evidence from an Elite College
spellingShingle Generative AI in Higher Education: Evidence from an Elite College
Contractor, Zara
Ciencias Económicas
artificial intelligence
education
analysis of education
technological change
title_short Generative AI in Higher Education: Evidence from an Elite College
title_full Generative AI in Higher Education: Evidence from an Elite College
title_fullStr Generative AI in Higher Education: Evidence from an Elite College
title_full_unstemmed Generative AI in Higher Education: Evidence from an Elite College
title_sort Generative AI in Higher Education: Evidence from an Elite College
dc.creator.none.fl_str_mv Contractor, Zara
Reyes, Germán J.
author Contractor, Zara
author_facet Contractor, Zara
Reyes, Germán J.
author_role author
author2 Reyes, Germán J.
author2_role author
dc.subject.none.fl_str_mv Ciencias Económicas
artificial intelligence
education
analysis of education
technological change
topic Ciencias Económicas
artificial intelligence
education
analysis of education
technological change
dc.description.none.fl_txt_mv Generative AI is transforming higher education, yet systematic evidence on student adoption remains limited. Using novel survey data from a selective U.S. college, we document over 80 percent of students using AI academically within two years of ChatGPT’s release. Adoption varies across disciplines, demographics, and achievement levels, highlighting AI’s potential to reshape educational inequalities. Students predominantly use AI for augmenting learning (e.g., explanations, feedback), but also to automate tasks (e.g., essay generation). Positive perceptions of AI’s educational benefits strongly predict adoption. Institutional policies can influence usage patterns but risk creating unintended disparate impacts across student groups due to uneven compliance.
Centro de Estudios Distributivos, Laborales y Sociales
description Generative AI is transforming higher education, yet systematic evidence on student adoption remains limited. Using novel survey data from a selective U.S. college, we document over 80 percent of students using AI academically within two years of ChatGPT’s release. Adoption varies across disciplines, demographics, and achievement levels, highlighting AI’s potential to reshape educational inequalities. Students predominantly use AI for augmenting learning (e.g., explanations, feedback), but also to automate tasks (e.g., essay generation). Positive perceptions of AI’s educational benefits strongly predict adoption. Institutional policies can influence usage patterns but risk creating unintended disparate impacts across student groups due to uneven compliance.
publishDate 2025
dc.date.none.fl_str_mv 2025-11
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
info:eu-repo/semantics/submittedVersion
Documento de trabajo
http://purl.org/coar/resource_type/c_8042
info:ar-repo/semantics/documentoDeTrabajo
format workingPaper
status_str submittedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/187092
url http://sedici.unlp.edu.ar/handle/10915/187092
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1853-0168
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1849876347491450880
score 13.011256