Skeletonization of sparse shapes using dynamic competitive neural networks
- Autores
- Hasperué, Waldo; Corbalán, Leonardo César; Lanzarini, Laura Cristina; Bria, Oscar N.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La detección de regiones y objetos en imágenes digitales es un tema de suma importancia en la resolución de numerosos problemas correspondientes al área de reconocimiento de patrones. En esta dirección los algoritmos de esqueletización son una herramienta muy utilizada ya que permiten reducir la cantidad de información disponible facilitando la extracción de características para su posterior reconocimiento y clasificación. Además, esta transformación de la información original en sus características esenciales, facilita la eliminación de ruidos locales presentes en la entrada de datos. Este artículo propone una nueva estrategia de esqueletización aplicable a imágenes esparcidas a partir de una red neuronal competitiva dinámica entrenada con el método AVGSOM. La estrategia desarrollada en este trabajo determina los arcos que forman el esqueleto combinando el aprendizaje no supervisado del AVGSOM con un árbol de dispersión mínima (minimun spaning tree). El método propuesto ha sido aplicado en imágenes con diferente forma y grado de dispersión. En particular, los resultados obtenidos han sido comparados con soluciones existentes mostrando resultados satisfactorios. Finalmente se presentan algunas conclusiones así como algunas líneas de trabajo futuras
The detection of regions and objects in digital images is a topic of utmost importance for solving several problems related to the area of pattern recognition. In this direction, skeletonization algorithms are a widely used tool since they allow us to reduce the quantity of available data, easing the detection of characteristics for their recognition and classification. In addition, this transformation of the original data in its essential characteristics eases the elimination of local noise which is present in the data input. This paper proposes a new skeletonization strategy applicable to sparse images from a competitive, dynamic neural network trained with the AVGSOM method. The strategy developed in this paper determines the arc making up the skeleton combining AVGSOM non-supervised learning with a minimum spanning tree. The proposed method has been applied in images with different spanning shape and degree. In particular, the results obtained have been compared to existing solutions, showing successful results. Finally, some conclusions, together with some future lines of work, are presented.
VII Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
skeletonization
dynamic self-organizing maps
Neural nets
Image processing software - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22675
Ver los metadatos del registro completo
id |
SEDICI_602777cbabf67b55845b76c7e4d0395e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22675 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Skeletonization of sparse shapes using dynamic competitive neural networksHasperué, WaldoCorbalán, Leonardo CésarLanzarini, Laura CristinaBria, Oscar N.Ciencias Informáticasskeletonizationdynamic self-organizing mapsNeural netsImage processing softwareLa detección de regiones y objetos en imágenes digitales es un tema de suma importancia en la resolución de numerosos problemas correspondientes al área de reconocimiento de patrones. En esta dirección los algoritmos de esqueletización son una herramienta muy utilizada ya que permiten reducir la cantidad de información disponible facilitando la extracción de características para su posterior reconocimiento y clasificación. Además, esta transformación de la información original en sus características esenciales, facilita la eliminación de ruidos locales presentes en la entrada de datos. Este artículo propone una nueva estrategia de esqueletización aplicable a imágenes esparcidas a partir de una red neuronal competitiva dinámica entrenada con el método AVGSOM. La estrategia desarrollada en este trabajo determina los arcos que forman el esqueleto combinando el aprendizaje no supervisado del AVGSOM con un árbol de dispersión mínima (minimun spaning tree). El método propuesto ha sido aplicado en imágenes con diferente forma y grado de dispersión. En particular, los resultados obtenidos han sido comparados con soluciones existentes mostrando resultados satisfactorios. Finalmente se presentan algunas conclusiones así como algunas líneas de trabajo futurasThe detection of regions and objects in digital images is a topic of utmost importance for solving several problems related to the area of pattern recognition. In this direction, skeletonization algorithms are a widely used tool since they allow us to reduce the quantity of available data, easing the detection of characteristics for their recognition and classification. In addition, this transformation of the original data in its essential characteristics eases the elimination of local noise which is present in the data input. This paper proposes a new skeletonization strategy applicable to sparse images from a competitive, dynamic neural network trained with the AVGSOM method. The strategy developed in this paper determines the arc making up the skeleton combining AVGSOM non-supervised learning with a minimum spanning tree. The proposed method has been applied in images with different spanning shape and degree. In particular, the results obtained have been compared to existing solutions, showing successful results. Finally, some conclusions, together with some future lines of work, are presented.VII Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2006-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1331-1341http://sedici.unlp.edu.ar/handle/10915/22675enginfo:eu-repo/semantics/reference/hdl/10915/127869info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:27:58Zoai:sedici.unlp.edu.ar:10915/22675Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:27:58.509SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Skeletonization of sparse shapes using dynamic competitive neural networks |
title |
Skeletonization of sparse shapes using dynamic competitive neural networks |
spellingShingle |
Skeletonization of sparse shapes using dynamic competitive neural networks Hasperué, Waldo Ciencias Informáticas skeletonization dynamic self-organizing maps Neural nets Image processing software |
title_short |
Skeletonization of sparse shapes using dynamic competitive neural networks |
title_full |
Skeletonization of sparse shapes using dynamic competitive neural networks |
title_fullStr |
Skeletonization of sparse shapes using dynamic competitive neural networks |
title_full_unstemmed |
Skeletonization of sparse shapes using dynamic competitive neural networks |
title_sort |
Skeletonization of sparse shapes using dynamic competitive neural networks |
dc.creator.none.fl_str_mv |
Hasperué, Waldo Corbalán, Leonardo César Lanzarini, Laura Cristina Bria, Oscar N. |
author |
Hasperué, Waldo |
author_facet |
Hasperué, Waldo Corbalán, Leonardo César Lanzarini, Laura Cristina Bria, Oscar N. |
author_role |
author |
author2 |
Corbalán, Leonardo César Lanzarini, Laura Cristina Bria, Oscar N. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas skeletonization dynamic self-organizing maps Neural nets Image processing software |
topic |
Ciencias Informáticas skeletonization dynamic self-organizing maps Neural nets Image processing software |
dc.description.none.fl_txt_mv |
La detección de regiones y objetos en imágenes digitales es un tema de suma importancia en la resolución de numerosos problemas correspondientes al área de reconocimiento de patrones. En esta dirección los algoritmos de esqueletización son una herramienta muy utilizada ya que permiten reducir la cantidad de información disponible facilitando la extracción de características para su posterior reconocimiento y clasificación. Además, esta transformación de la información original en sus características esenciales, facilita la eliminación de ruidos locales presentes en la entrada de datos. Este artículo propone una nueva estrategia de esqueletización aplicable a imágenes esparcidas a partir de una red neuronal competitiva dinámica entrenada con el método AVGSOM. La estrategia desarrollada en este trabajo determina los arcos que forman el esqueleto combinando el aprendizaje no supervisado del AVGSOM con un árbol de dispersión mínima (minimun spaning tree). El método propuesto ha sido aplicado en imágenes con diferente forma y grado de dispersión. En particular, los resultados obtenidos han sido comparados con soluciones existentes mostrando resultados satisfactorios. Finalmente se presentan algunas conclusiones así como algunas líneas de trabajo futuras The detection of regions and objects in digital images is a topic of utmost importance for solving several problems related to the area of pattern recognition. In this direction, skeletonization algorithms are a widely used tool since they allow us to reduce the quantity of available data, easing the detection of characteristics for their recognition and classification. In addition, this transformation of the original data in its essential characteristics eases the elimination of local noise which is present in the data input. This paper proposes a new skeletonization strategy applicable to sparse images from a competitive, dynamic neural network trained with the AVGSOM method. The strategy developed in this paper determines the arc making up the skeleton combining AVGSOM non-supervised learning with a minimum spanning tree. The proposed method has been applied in images with different spanning shape and degree. In particular, the results obtained have been compared to existing solutions, showing successful results. Finally, some conclusions, together with some future lines of work, are presented. VII Workshop de Agentes y Sistemas Inteligentes (WASI) Red de Universidades con Carreras en Informática (RedUNCI) |
description |
La detección de regiones y objetos en imágenes digitales es un tema de suma importancia en la resolución de numerosos problemas correspondientes al área de reconocimiento de patrones. En esta dirección los algoritmos de esqueletización son una herramienta muy utilizada ya que permiten reducir la cantidad de información disponible facilitando la extracción de características para su posterior reconocimiento y clasificación. Además, esta transformación de la información original en sus características esenciales, facilita la eliminación de ruidos locales presentes en la entrada de datos. Este artículo propone una nueva estrategia de esqueletización aplicable a imágenes esparcidas a partir de una red neuronal competitiva dinámica entrenada con el método AVGSOM. La estrategia desarrollada en este trabajo determina los arcos que forman el esqueleto combinando el aprendizaje no supervisado del AVGSOM con un árbol de dispersión mínima (minimun spaning tree). El método propuesto ha sido aplicado en imágenes con diferente forma y grado de dispersión. En particular, los resultados obtenidos han sido comparados con soluciones existentes mostrando resultados satisfactorios. Finalmente se presentan algunas conclusiones así como algunas líneas de trabajo futuras |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22675 |
url |
http://sedici.unlp.edu.ar/handle/10915/22675 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/reference/hdl/10915/127869 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 1331-1341 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260117923299328 |
score |
13.13397 |