Metaheuristic approaches for MWT and MWPT problems

Autores
Dorzán, María Gisela; Gagliardi, Edilma Olinda; Hernández Peñalver, Gregorio; Leguizamón, Mario Guillermo
Año de publicación
2011
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
It is known that the Minimum Weight Triangulation problem is NP-hard. Also the complexity of Minimum Weight Pseudo-Triangulation problem is unknown, suspecting that it is also a NP-hard problem. Therefore we focused on the development of approximate algorithms to find high quality triangulations and pseudo-triangulations of minimum weight. In this work we propose the use of two metaheuristics to solve these problems: Ant Colony Optimization (ACO) and Simulated Annealing (SA). For the experimental study we have created a set of instances for MWT and MWPT problems since no reference to benchmarks for these problems were found in the literature. Through the experimental evaluation, we assess the applicability of the ACO and SA metaheuristics for MWT and MWPT problems. These results are compared with those obtained from the application of deterministic algorithms for the same problems (Delaunay Triangulation for MWT and a Greedy algorithm respectively for MWT and MWPT).
Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Heuristic methods
Computational Geometry and Object Modeling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/18640

id SEDICI_5f172ec8fab4519e33eed37ee98e58c6
oai_identifier_str oai:sedici.unlp.edu.ar:10915/18640
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Metaheuristic approaches for MWT and MWPT problemsDorzán, María GiselaGagliardi, Edilma OlindaHernández Peñalver, GregorioLeguizamón, Mario GuillermoCiencias InformáticasHeuristic methodsComputational Geometry and Object ModelingIt is known that the Minimum Weight Triangulation problem is NP-hard. Also the complexity of Minimum Weight Pseudo-Triangulation problem is unknown, suspecting that it is also a NP-hard problem. Therefore we focused on the development of approximate algorithms to find high quality triangulations and pseudo-triangulations of minimum weight. In this work we propose the use of two metaheuristics to solve these problems: Ant Colony Optimization (ACO) and Simulated Annealing (SA). For the experimental study we have created a set of instances for MWT and MWPT problems since no reference to benchmarks for these problems were found in the literature. Through the experimental evaluation, we assess the applicability of the ACO and SA metaheuristics for MWT and MWPT problems. These results are compared with those obtained from the application of deterministic algorithms for the same problems (Delaunay Triangulation for MWT and a Greedy algorithm respectively for MWT and MWPT).Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2011-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf151-160http://sedici.unlp.edu.ar/handle/10915/18640enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:53:36Zoai:sedici.unlp.edu.ar:10915/18640Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:53:36.532SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Metaheuristic approaches for MWT and MWPT problems
title Metaheuristic approaches for MWT and MWPT problems
spellingShingle Metaheuristic approaches for MWT and MWPT problems
Dorzán, María Gisela
Ciencias Informáticas
Heuristic methods
Computational Geometry and Object Modeling
title_short Metaheuristic approaches for MWT and MWPT problems
title_full Metaheuristic approaches for MWT and MWPT problems
title_fullStr Metaheuristic approaches for MWT and MWPT problems
title_full_unstemmed Metaheuristic approaches for MWT and MWPT problems
title_sort Metaheuristic approaches for MWT and MWPT problems
dc.creator.none.fl_str_mv Dorzán, María Gisela
Gagliardi, Edilma Olinda
Hernández Peñalver, Gregorio
Leguizamón, Mario Guillermo
author Dorzán, María Gisela
author_facet Dorzán, María Gisela
Gagliardi, Edilma Olinda
Hernández Peñalver, Gregorio
Leguizamón, Mario Guillermo
author_role author
author2 Gagliardi, Edilma Olinda
Hernández Peñalver, Gregorio
Leguizamón, Mario Guillermo
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Heuristic methods
Computational Geometry and Object Modeling
topic Ciencias Informáticas
Heuristic methods
Computational Geometry and Object Modeling
dc.description.none.fl_txt_mv It is known that the Minimum Weight Triangulation problem is NP-hard. Also the complexity of Minimum Weight Pseudo-Triangulation problem is unknown, suspecting that it is also a NP-hard problem. Therefore we focused on the development of approximate algorithms to find high quality triangulations and pseudo-triangulations of minimum weight. In this work we propose the use of two metaheuristics to solve these problems: Ant Colony Optimization (ACO) and Simulated Annealing (SA). For the experimental study we have created a set of instances for MWT and MWPT problems since no reference to benchmarks for these problems were found in the literature. Through the experimental evaluation, we assess the applicability of the ACO and SA metaheuristics for MWT and MWPT problems. These results are compared with those obtained from the application of deterministic algorithms for the same problems (Delaunay Triangulation for MWT and a Greedy algorithm respectively for MWT and MWPT).
Presentado en el XII Workshop Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description It is known that the Minimum Weight Triangulation problem is NP-hard. Also the complexity of Minimum Weight Pseudo-Triangulation problem is unknown, suspecting that it is also a NP-hard problem. Therefore we focused on the development of approximate algorithms to find high quality triangulations and pseudo-triangulations of minimum weight. In this work we propose the use of two metaheuristics to solve these problems: Ant Colony Optimization (ACO) and Simulated Annealing (SA). For the experimental study we have created a set of instances for MWT and MWPT problems since no reference to benchmarks for these problems were found in the literature. Through the experimental evaluation, we assess the applicability of the ACO and SA metaheuristics for MWT and MWPT problems. These results are compared with those obtained from the application of deterministic algorithms for the same problems (Delaunay Triangulation for MWT and a Greedy algorithm respectively for MWT and MWPT).
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/18640
url http://sedici.unlp.edu.ar/handle/10915/18640
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
151-160
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615791668887552
score 13.069144