Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristic
- Autores
- Dorzán, María Gisela; Gagliardi, Edilma Olinda; Leguizamón, Mario Guillermo; Hernández Peñalver, Gregorio
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Globally optimal triangulations are difficult to be found by deterministic methods as, for most type of criteria, no polynomial algorithm is known. In this work, we consider the Minimum Weight Triangulation (MWT) problem of a given set of n points in the plane. Our aim is to show how the Ant Colony Optimization (ACO) metaheuristic can be used to search for globally optimal triangulations of minimum weight. We present an experimental study for a set of instances for MWT problem. We create these instances since no reference to benchmarks for this problem were found in the literature. We assess through the experimental evaluation the applicability of the ACO metaheuristic for MWT problem.
Facultad de Informática - Materia
-
Ciencias Informáticas
Computational Geometry and Object Modeling
Heuristic methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/9668
Ver los metadatos del registro completo
id |
SEDICI_2c20200aa656785c30cedd534aeaf8f4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/9668 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristicDorzán, María GiselaGagliardi, Edilma OlindaLeguizamón, Mario GuillermoHernández Peñalver, GregorioCiencias InformáticasComputational Geometry and Object ModelingHeuristic methodsGlobally optimal triangulations are difficult to be found by deterministic methods as, for most type of criteria, no polynomial algorithm is known. In this work, we consider the Minimum Weight Triangulation (MWT) problem of a given set of n points in the plane. Our aim is to show how the Ant Colony Optimization (ACO) metaheuristic can be used to search for globally optimal triangulations of minimum weight. We present an experimental study for a set of instances for MWT problem. We create these instances since no reference to benchmarks for this problem were found in the literature. We assess through the experimental evaluation the applicability of the ACO metaheuristic for MWT problem.Facultad de Informática2010-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf47-53http://sedici.unlp.edu.ar/handle/10915/9668enginfo:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Jun10-1.pdfinfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/3.0/Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:43:21Zoai:sedici.unlp.edu.ar:10915/9668Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:43:21.841SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristic |
title |
Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristic |
spellingShingle |
Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristic Dorzán, María Gisela Ciencias Informáticas Computational Geometry and Object Modeling Heuristic methods |
title_short |
Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristic |
title_full |
Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristic |
title_fullStr |
Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristic |
title_full_unstemmed |
Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristic |
title_sort |
Globally optimal triangulations of minimum weight using Ant Colony Optimization metaheuristic |
dc.creator.none.fl_str_mv |
Dorzán, María Gisela Gagliardi, Edilma Olinda Leguizamón, Mario Guillermo Hernández Peñalver, Gregorio |
author |
Dorzán, María Gisela |
author_facet |
Dorzán, María Gisela Gagliardi, Edilma Olinda Leguizamón, Mario Guillermo Hernández Peñalver, Gregorio |
author_role |
author |
author2 |
Gagliardi, Edilma Olinda Leguizamón, Mario Guillermo Hernández Peñalver, Gregorio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Computational Geometry and Object Modeling Heuristic methods |
topic |
Ciencias Informáticas Computational Geometry and Object Modeling Heuristic methods |
dc.description.none.fl_txt_mv |
Globally optimal triangulations are difficult to be found by deterministic methods as, for most type of criteria, no polynomial algorithm is known. In this work, we consider the Minimum Weight Triangulation (MWT) problem of a given set of n points in the plane. Our aim is to show how the Ant Colony Optimization (ACO) metaheuristic can be used to search for globally optimal triangulations of minimum weight. We present an experimental study for a set of instances for MWT problem. We create these instances since no reference to benchmarks for this problem were found in the literature. We assess through the experimental evaluation the applicability of the ACO metaheuristic for MWT problem. Facultad de Informática |
description |
Globally optimal triangulations are difficult to be found by deterministic methods as, for most type of criteria, no polynomial algorithm is known. In this work, we consider the Minimum Weight Triangulation (MWT) problem of a given set of n points in the plane. Our aim is to show how the Ant Colony Optimization (ACO) metaheuristic can be used to search for globally optimal triangulations of minimum weight. We present an experimental study for a set of instances for MWT problem. We create these instances since no reference to benchmarks for this problem were found in the literature. We assess through the experimental evaluation the applicability of the ACO metaheuristic for MWT problem. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/9668 |
url |
http://sedici.unlp.edu.ar/handle/10915/9668 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Jun10-1.pdf info:eu-repo/semantics/altIdentifier/issn/1666-6038 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/3.0/ Creative Commons Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0) |
dc.format.none.fl_str_mv |
application/pdf 47-53 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063848427094016 |
score |
13.22299 |