An unbalanced approach to metric space searching

Autores
Chávez, Edgar; Ludueña, Verónica; Reyes, Nora Susana
Año de publicación
2005
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Proximity queries (the searching problem generalized beyond exact match) is mostly modeled as metric space. A metric space consists of a collection of objects and a distance function defined among them. The goal is to preprocess the data set (a slow procedure) to quickly answer proximity queries. This problem have received a lot of attention recently, specially in the pattern recognition community. The Excluded Middle Vantage Point Forest (VP–forest) is a data structure designed to search in high dimensional vector spaces. A VP–forest is built as a collection of balanced Vantage Point Trees (VP–trees). In this work we propose a novel two-fold approach for searching. Firstly we extend the VP– forest to search in metric spaces, and more importantly we test a counterintuitive modification to the VP–tree, namely to unbalance it. In exact searching an unbalanced data structure perform poorly, and most of the algorithmic effort is directed to obtain a balanced data structure. The unbalancing approach is motivated by a recent data structure (the List of Clusters ) specialized in high dimensional metric space searches, which is an extremely unbalanced data structure (a linked list) outperforming other approaches.
Eje: Algoritmos
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Unbalanced Approach
Algorithms
Metric Space Searching
Metrics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21087

id SEDICI_5ecf7a30685df607ebcd82690591b11c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21087
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An unbalanced approach to metric space searchingChávez, EdgarLudueña, VerónicaReyes, Nora SusanaCiencias InformáticasUnbalanced ApproachAlgorithmsMetric Space SearchingMetricsProximity queries (the searching problem generalized beyond exact match) is mostly modeled as metric space. A metric space consists of a collection of objects and a distance function defined among them. The goal is to preprocess the data set (a slow procedure) to quickly answer proximity queries. This problem have received a lot of attention recently, specially in the pattern recognition community. The Excluded Middle Vantage Point Forest (VP–forest) is a data structure designed to search in high dimensional vector spaces. A VP–forest is built as a collection of balanced Vantage Point Trees (VP–trees). In this work we propose a novel two-fold approach for searching. Firstly we extend the VP– forest to search in metric spaces, and more importantly we test a counterintuitive modification to the VP–tree, namely to unbalance it. In exact searching an unbalanced data structure perform poorly, and most of the algorithmic effort is directed to obtain a balanced data structure. The unbalancing approach is motivated by a recent data structure (the List of Clusters ) specialized in high dimensional metric space searches, which is an extremely unbalanced data structure (a linked list) outperforming other approaches.Eje: AlgoritmosRed de Universidades con Carreras en Informática (RedUNCI)2005-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf339-343http://sedici.unlp.edu.ar/handle/10915/21087enginfo:eu-repo/semantics/altIdentifier/isbn/950-665-337-2info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:31Zoai:sedici.unlp.edu.ar:10915/21087Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:31.359SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An unbalanced approach to metric space searching
title An unbalanced approach to metric space searching
spellingShingle An unbalanced approach to metric space searching
Chávez, Edgar
Ciencias Informáticas
Unbalanced Approach
Algorithms
Metric Space Searching
Metrics
title_short An unbalanced approach to metric space searching
title_full An unbalanced approach to metric space searching
title_fullStr An unbalanced approach to metric space searching
title_full_unstemmed An unbalanced approach to metric space searching
title_sort An unbalanced approach to metric space searching
dc.creator.none.fl_str_mv Chávez, Edgar
Ludueña, Verónica
Reyes, Nora Susana
author Chávez, Edgar
author_facet Chávez, Edgar
Ludueña, Verónica
Reyes, Nora Susana
author_role author
author2 Ludueña, Verónica
Reyes, Nora Susana
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Unbalanced Approach
Algorithms
Metric Space Searching
Metrics
topic Ciencias Informáticas
Unbalanced Approach
Algorithms
Metric Space Searching
Metrics
dc.description.none.fl_txt_mv Proximity queries (the searching problem generalized beyond exact match) is mostly modeled as metric space. A metric space consists of a collection of objects and a distance function defined among them. The goal is to preprocess the data set (a slow procedure) to quickly answer proximity queries. This problem have received a lot of attention recently, specially in the pattern recognition community. The Excluded Middle Vantage Point Forest (VP–forest) is a data structure designed to search in high dimensional vector spaces. A VP–forest is built as a collection of balanced Vantage Point Trees (VP–trees). In this work we propose a novel two-fold approach for searching. Firstly we extend the VP– forest to search in metric spaces, and more importantly we test a counterintuitive modification to the VP–tree, namely to unbalance it. In exact searching an unbalanced data structure perform poorly, and most of the algorithmic effort is directed to obtain a balanced data structure. The unbalancing approach is motivated by a recent data structure (the List of Clusters ) specialized in high dimensional metric space searches, which is an extremely unbalanced data structure (a linked list) outperforming other approaches.
Eje: Algoritmos
Red de Universidades con Carreras en Informática (RedUNCI)
description Proximity queries (the searching problem generalized beyond exact match) is mostly modeled as metric space. A metric space consists of a collection of objects and a distance function defined among them. The goal is to preprocess the data set (a slow procedure) to quickly answer proximity queries. This problem have received a lot of attention recently, specially in the pattern recognition community. The Excluded Middle Vantage Point Forest (VP–forest) is a data structure designed to search in high dimensional vector spaces. A VP–forest is built as a collection of balanced Vantage Point Trees (VP–trees). In this work we propose a novel two-fold approach for searching. Firstly we extend the VP– forest to search in metric spaces, and more importantly we test a counterintuitive modification to the VP–tree, namely to unbalance it. In exact searching an unbalanced data structure perform poorly, and most of the algorithmic effort is directed to obtain a balanced data structure. The unbalancing approach is motivated by a recent data structure (the List of Clusters ) specialized in high dimensional metric space searches, which is an extremely unbalanced data structure (a linked list) outperforming other approaches.
publishDate 2005
dc.date.none.fl_str_mv 2005-05
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21087
url http://sedici.unlp.edu.ar/handle/10915/21087
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/950-665-337-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
339-343
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615802622312448
score 13.070432