A classification approach for heterotic performance prediction based on molecular marker data
- Autores
- Ornella, Leonardo; Tapia, Elizabeth
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A number of statistical methods based on molecular data are currently available for assigning new inbreds to heterotic groups in maize (Zea mays L), with variable results. We conjecture that the main flaw of such models is that they do not capture the non-linear relation between parental data and progeny performance. In this paper, we propose the use of supervised learning methods for handling such non-linearity. Standard and novel multiclassification methods are evaluated. Best results are obtained with the recently introduced class of multiclass, binary based,Recursive ECOC (RECOC) classifiers. RECOC classifiers are inspired in state of art Coding Theory solutions for the problem of transmitting symbols over noisy channels. For molecular marker data the noisy channel abstraction embeds the hardness of learning a classification function from noisy and scarce samples. Field data (top crosses between 26 inbreed lines and four tester populations), processed by cluster analysis in a previous work, was integrated with molecular marker data and used for training RECOC – AdaBoost Support Vector Machines RBF classifiers. A 34.10 % 3-CV error was achieved, clearly improving previously reported results on this task.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Machine learning
maize
heterotic group - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/135733
Ver los metadatos del registro completo
| id |
SEDICI_5b85731684dfa32af5c91ed73661653f |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/135733 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
A classification approach for heterotic performance prediction based on molecular marker dataOrnella, LeonardoTapia, ElizabethCiencias InformáticasMachine learningmaizeheterotic groupA number of statistical methods based on molecular data are currently available for assigning new inbreds to heterotic groups in maize (Zea mays L), with variable results. We conjecture that the main flaw of such models is that they do not capture the non-linear relation between parental data and progeny performance. In this paper, we propose the use of supervised learning methods for handling such non-linearity. Standard and novel multiclassification methods are evaluated. Best results are obtained with the recently introduced class of multiclass, binary based,Recursive ECOC (RECOC) classifiers. RECOC classifiers are inspired in state of art Coding Theory solutions for the problem of transmitting symbols over noisy channels. For molecular marker data the noisy channel abstraction embeds the hardness of learning a classification function from noisy and scarce samples. Field data (top crosses between 26 inbreed lines and four tester populations), processed by cluster analysis in a previous work, was integrated with molecular marker data and used for training RECOC – AdaBoost Support Vector Machines RBF classifiers. A 34.10 % 3-CV error was achieved, clearly improving previously reported results on this task.Sociedad Argentina de Informática e Investigación Operativa2007-06-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf24-30http://sedici.unlp.edu.ar/handle/10915/135733enginfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/94info:eu-repo/semantics/altIdentifier/issn/1514-6774info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T13:13:23Zoai:sedici.unlp.edu.ar:10915/135733Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 13:13:23.67SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
A classification approach for heterotic performance prediction based on molecular marker data |
| title |
A classification approach for heterotic performance prediction based on molecular marker data |
| spellingShingle |
A classification approach for heterotic performance prediction based on molecular marker data Ornella, Leonardo Ciencias Informáticas Machine learning maize heterotic group |
| title_short |
A classification approach for heterotic performance prediction based on molecular marker data |
| title_full |
A classification approach for heterotic performance prediction based on molecular marker data |
| title_fullStr |
A classification approach for heterotic performance prediction based on molecular marker data |
| title_full_unstemmed |
A classification approach for heterotic performance prediction based on molecular marker data |
| title_sort |
A classification approach for heterotic performance prediction based on molecular marker data |
| dc.creator.none.fl_str_mv |
Ornella, Leonardo Tapia, Elizabeth |
| author |
Ornella, Leonardo |
| author_facet |
Ornella, Leonardo Tapia, Elizabeth |
| author_role |
author |
| author2 |
Tapia, Elizabeth |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Machine learning maize heterotic group |
| topic |
Ciencias Informáticas Machine learning maize heterotic group |
| dc.description.none.fl_txt_mv |
A number of statistical methods based on molecular data are currently available for assigning new inbreds to heterotic groups in maize (Zea mays L), with variable results. We conjecture that the main flaw of such models is that they do not capture the non-linear relation between parental data and progeny performance. In this paper, we propose the use of supervised learning methods for handling such non-linearity. Standard and novel multiclassification methods are evaluated. Best results are obtained with the recently introduced class of multiclass, binary based,Recursive ECOC (RECOC) classifiers. RECOC classifiers are inspired in state of art Coding Theory solutions for the problem of transmitting symbols over noisy channels. For molecular marker data the noisy channel abstraction embeds the hardness of learning a classification function from noisy and scarce samples. Field data (top crosses between 26 inbreed lines and four tester populations), processed by cluster analysis in a previous work, was integrated with molecular marker data and used for training RECOC – AdaBoost Support Vector Machines RBF classifiers. A 34.10 % 3-CV error was achieved, clearly improving previously reported results on this task. Sociedad Argentina de Informática e Investigación Operativa |
| description |
A number of statistical methods based on molecular data are currently available for assigning new inbreds to heterotic groups in maize (Zea mays L), with variable results. We conjecture that the main flaw of such models is that they do not capture the non-linear relation between parental data and progeny performance. In this paper, we propose the use of supervised learning methods for handling such non-linearity. Standard and novel multiclassification methods are evaluated. Best results are obtained with the recently introduced class of multiclass, binary based,Recursive ECOC (RECOC) classifiers. RECOC classifiers are inspired in state of art Coding Theory solutions for the problem of transmitting symbols over noisy channels. For molecular marker data the noisy channel abstraction embeds the hardness of learning a classification function from noisy and scarce samples. Field data (top crosses between 26 inbreed lines and four tester populations), processed by cluster analysis in a previous work, was integrated with molecular marker data and used for training RECOC – AdaBoost Support Vector Machines RBF classifiers. A 34.10 % 3-CV error was achieved, clearly improving previously reported results on this task. |
| publishDate |
2007 |
| dc.date.none.fl_str_mv |
2007-06-26 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/135733 |
| url |
http://sedici.unlp.edu.ar/handle/10915/135733 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/94 info:eu-repo/semantics/altIdentifier/issn/1514-6774 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 24-30 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978779057586176 |
| score |
13.087074 |