Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data
- Autores
- Ornella, Leonardo Alfredo; Tapia, Elizabeth
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The development of molecular techniques for genetic analysis has enabled great advances in cereal breeding. However, their usefulness in hybrid breeding, particularly in assigning new lines to heterotic groups previously established, still remains unsolved. In this work we evaluate the performance of several state-of-art multiclass classifiers onto three molecular marker datasets representing a broad spectrum of maize heterotic patterns. Even though results are variable, they suggest supervised learning algorithms as a valuable complement to traditional breeding programs.
Fil: Ornella, Leonardo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Tapia, Elizabeth. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina - Materia
-
HETEROTIC GROUPS
MAIZE
SUPERVISED LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/118478
Ver los metadatos del registro completo
id |
CONICETDig_68b975811f8a481714f848d6d53118f7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/118478 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker dataOrnella, Leonardo AlfredoTapia, ElizabethHETEROTIC GROUPSMAIZESUPERVISED LEARNINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The development of molecular techniques for genetic analysis has enabled great advances in cereal breeding. However, their usefulness in hybrid breeding, particularly in assigning new lines to heterotic groups previously established, still remains unsolved. In this work we evaluate the performance of several state-of-art multiclass classifiers onto three molecular marker datasets representing a broad spectrum of maize heterotic patterns. Even though results are variable, they suggest supervised learning algorithms as a valuable complement to traditional breeding programs.Fil: Ornella, Leonardo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Tapia, Elizabeth. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaElsevier2010-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118478Ornella, Leonardo Alfredo; Tapia, Elizabeth; Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data; Elsevier; Computers and Eletronics in Agriculture; 74; 2; 11-2010; 250-2570168-1699CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168169910001572info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2010.08.013info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:16Zoai:ri.conicet.gov.ar:11336/118478instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:17.103CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data |
title |
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data |
spellingShingle |
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data Ornella, Leonardo Alfredo HETEROTIC GROUPS MAIZE SUPERVISED LEARNING |
title_short |
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data |
title_full |
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data |
title_fullStr |
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data |
title_full_unstemmed |
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data |
title_sort |
Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data |
dc.creator.none.fl_str_mv |
Ornella, Leonardo Alfredo Tapia, Elizabeth |
author |
Ornella, Leonardo Alfredo |
author_facet |
Ornella, Leonardo Alfredo Tapia, Elizabeth |
author_role |
author |
author2 |
Tapia, Elizabeth |
author2_role |
author |
dc.subject.none.fl_str_mv |
HETEROTIC GROUPS MAIZE SUPERVISED LEARNING |
topic |
HETEROTIC GROUPS MAIZE SUPERVISED LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The development of molecular techniques for genetic analysis has enabled great advances in cereal breeding. However, their usefulness in hybrid breeding, particularly in assigning new lines to heterotic groups previously established, still remains unsolved. In this work we evaluate the performance of several state-of-art multiclass classifiers onto three molecular marker datasets representing a broad spectrum of maize heterotic patterns. Even though results are variable, they suggest supervised learning algorithms as a valuable complement to traditional breeding programs. Fil: Ornella, Leonardo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Tapia, Elizabeth. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina |
description |
The development of molecular techniques for genetic analysis has enabled great advances in cereal breeding. However, their usefulness in hybrid breeding, particularly in assigning new lines to heterotic groups previously established, still remains unsolved. In this work we evaluate the performance of several state-of-art multiclass classifiers onto three molecular marker datasets representing a broad spectrum of maize heterotic patterns. Even though results are variable, they suggest supervised learning algorithms as a valuable complement to traditional breeding programs. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/118478 Ornella, Leonardo Alfredo; Tapia, Elizabeth; Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data; Elsevier; Computers and Eletronics in Agriculture; 74; 2; 11-2010; 250-257 0168-1699 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/118478 |
identifier_str_mv |
Ornella, Leonardo Alfredo; Tapia, Elizabeth; Supervised machine learning and heterotic classification of maize (Zea mays L.) using molecular marker data; Elsevier; Computers and Eletronics in Agriculture; 74; 2; 11-2010; 250-257 0168-1699 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0168169910001572 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compag.2010.08.013 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614322790072320 |
score |
13.070432 |