Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicas
- Autores
- Bosyk, Gustavo Martín
- Año de publicación
- 2014
- Idioma
- español castellano
- Tipo de recurso
- tesis doctoral
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Portesi, Mariela A.
- Descripción
- En esta Tesis desarrollamos dos formulaciones diferentes (pero vinculadas entre sí) del principio de incerteza de la mecánica cuántica para pares de observables actuando sobre un espacio de Hilbert finito, yendo más allá del alcance de las tradicionales relaciones de incerteza de Heisenberg, de Robertson y de Schröndinger. Una de las formulaciones que desarrollamos es una extensión de la desigualdad de Landau y Pollak al caso de medidas de operadores con valores positivos y estados mixtos. Para lograr esto hicimos uso de un enfoque geométrico, definiendo la incerteza asociada al resultado de la medición de un observable a partir de métricas entre estados cuánticos. Esto nos permitió mostrar, entre otros resultados, que la métrica de Wootters da la desigualdad más restrictiva a las probabilidades máximas de los observables. La otra formulación que desarrollamos se basa en un enfoque informacional. Para ello introducimos una familia de entropías generalizadas que cuantifican la incerteza asociada a un vector de probabilidad. Obtuvimos relaciones de incerteza tipo entrópicas resolviendo el problema de minimización de la suma de entropías generalizadas sujeta a la desigualdad de Landau–Pollak. De esta manera, extendimos los resultados de de Vicente y Sánchez-Ruiz que consideraban la entropía de Shannon a otras entropías, medidas cuánticas generalizadas y estados mixtos. Asimismo, realizamos un estudio comparativo entre las cotas obtenidas y otras disponibles en la literatura, obteniendo que en muchas de las situaciones consideradas nuestra cota es más fuerte. Además, consideramos el caso del qubit de manera particular y obtuvimos la cota óptima para este caso. Por último, estudiamos la conexión entre los principios de incerteza y complementariedad, en el contexto del interferómetro de Mach–Zehnder. Encontramos que las relaciones de Schrödinger y de Landau–Pollak para ciertos observables son equivalentes a la relación de dualidad onda–corpúsculo. Con respecto a las relaciones usando entropías, la equivalencia depende de la elección de los índices entrópicos. En particular, si los índices son iguales no existe tal equivalencia. Mostramos que esta situación sirve para discernir entre los diferentes estados de mínima incerteza.
Doctor en Ciencias Exactas, área Física
Universidad Nacional de La Plata
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Física
principio de incerteza
relaciones de incerteza tipo Landau- Pollak
relaciones de incerteza tipo entrópicas
complementariedad - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/39843
Ver los metadatos del registro completo
id |
SEDICI_5b67e929b8dba9c115d04822f69aae29 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/39843 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicasBosyk, Gustavo MartínCiencias ExactasFísicaprincipio de incertezarelaciones de incerteza tipo Landau- Pollakrelaciones de incerteza tipo entrópicascomplementariedadEn esta Tesis desarrollamos dos formulaciones diferentes (pero vinculadas entre sí) del principio de incerteza de la mecánica cuántica para pares de observables actuando sobre un espacio de Hilbert finito, yendo más allá del alcance de las tradicionales relaciones de incerteza de Heisenberg, de Robertson y de Schröndinger. Una de las formulaciones que desarrollamos es una extensión de la desigualdad de Landau y Pollak al caso de medidas de operadores con valores positivos y estados mixtos. Para lograr esto hicimos uso de un enfoque geométrico, definiendo la incerteza asociada al resultado de la medición de un observable a partir de métricas entre estados cuánticos. Esto nos permitió mostrar, entre otros resultados, que la métrica de Wootters da la desigualdad más restrictiva a las probabilidades máximas de los observables. La otra formulación que desarrollamos se basa en un enfoque informacional. Para ello introducimos una familia de entropías generalizadas que cuantifican la incerteza asociada a un vector de probabilidad. Obtuvimos relaciones de incerteza tipo entrópicas resolviendo el problema de minimización de la suma de entropías generalizadas sujeta a la desigualdad de Landau–Pollak. De esta manera, extendimos los resultados de de Vicente y Sánchez-Ruiz que consideraban la entropía de Shannon a otras entropías, medidas cuánticas generalizadas y estados mixtos. Asimismo, realizamos un estudio comparativo entre las cotas obtenidas y otras disponibles en la literatura, obteniendo que en muchas de las situaciones consideradas nuestra cota es más fuerte. Además, consideramos el caso del qubit de manera particular y obtuvimos la cota óptima para este caso. Por último, estudiamos la conexión entre los principios de incerteza y complementariedad, en el contexto del interferómetro de Mach–Zehnder. Encontramos que las relaciones de Schrödinger y de Landau–Pollak para ciertos observables son equivalentes a la relación de dualidad onda–corpúsculo. Con respecto a las relaciones usando entropías, la equivalencia depende de la elección de los índices entrópicos. En particular, si los índices son iguales no existe tal equivalencia. Mostramos que esta situación sirve para discernir entre los diferentes estados de mínima incerteza.Doctor en Ciencias Exactas, área FísicaUniversidad Nacional de La PlataFacultad de Ciencias ExactasPortesi, Mariela A.2014-09-02info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/39843https://doi.org/10.35537/10915/39843spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/ar/Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:00:31Zoai:sedici.unlp.edu.ar:10915/39843Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:00:31.292SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicas |
title |
Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicas |
spellingShingle |
Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicas Bosyk, Gustavo Martín Ciencias Exactas Física principio de incerteza relaciones de incerteza tipo Landau- Pollak relaciones de incerteza tipo entrópicas complementariedad |
title_short |
Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicas |
title_full |
Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicas |
title_fullStr |
Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicas |
title_full_unstemmed |
Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicas |
title_sort |
Más allá de Heisenberg : Relaciones de incerteza tipo Landau-Pollak y tipo entrópicas |
dc.creator.none.fl_str_mv |
Bosyk, Gustavo Martín |
author |
Bosyk, Gustavo Martín |
author_facet |
Bosyk, Gustavo Martín |
author_role |
author |
dc.contributor.none.fl_str_mv |
Portesi, Mariela A. |
dc.subject.none.fl_str_mv |
Ciencias Exactas Física principio de incerteza relaciones de incerteza tipo Landau- Pollak relaciones de incerteza tipo entrópicas complementariedad |
topic |
Ciencias Exactas Física principio de incerteza relaciones de incerteza tipo Landau- Pollak relaciones de incerteza tipo entrópicas complementariedad |
dc.description.none.fl_txt_mv |
En esta Tesis desarrollamos dos formulaciones diferentes (pero vinculadas entre sí) del principio de incerteza de la mecánica cuántica para pares de observables actuando sobre un espacio de Hilbert finito, yendo más allá del alcance de las tradicionales relaciones de incerteza de Heisenberg, de Robertson y de Schröndinger. Una de las formulaciones que desarrollamos es una extensión de la desigualdad de Landau y Pollak al caso de medidas de operadores con valores positivos y estados mixtos. Para lograr esto hicimos uso de un enfoque geométrico, definiendo la incerteza asociada al resultado de la medición de un observable a partir de métricas entre estados cuánticos. Esto nos permitió mostrar, entre otros resultados, que la métrica de Wootters da la desigualdad más restrictiva a las probabilidades máximas de los observables. La otra formulación que desarrollamos se basa en un enfoque informacional. Para ello introducimos una familia de entropías generalizadas que cuantifican la incerteza asociada a un vector de probabilidad. Obtuvimos relaciones de incerteza tipo entrópicas resolviendo el problema de minimización de la suma de entropías generalizadas sujeta a la desigualdad de Landau–Pollak. De esta manera, extendimos los resultados de de Vicente y Sánchez-Ruiz que consideraban la entropía de Shannon a otras entropías, medidas cuánticas generalizadas y estados mixtos. Asimismo, realizamos un estudio comparativo entre las cotas obtenidas y otras disponibles en la literatura, obteniendo que en muchas de las situaciones consideradas nuestra cota es más fuerte. Además, consideramos el caso del qubit de manera particular y obtuvimos la cota óptima para este caso. Por último, estudiamos la conexión entre los principios de incerteza y complementariedad, en el contexto del interferómetro de Mach–Zehnder. Encontramos que las relaciones de Schrödinger y de Landau–Pollak para ciertos observables son equivalentes a la relación de dualidad onda–corpúsculo. Con respecto a las relaciones usando entropías, la equivalencia depende de la elección de los índices entrópicos. En particular, si los índices son iguales no existe tal equivalencia. Mostramos que esta situación sirve para discernir entre los diferentes estados de mínima incerteza. Doctor en Ciencias Exactas, área Física Universidad Nacional de La Plata Facultad de Ciencias Exactas |
description |
En esta Tesis desarrollamos dos formulaciones diferentes (pero vinculadas entre sí) del principio de incerteza de la mecánica cuántica para pares de observables actuando sobre un espacio de Hilbert finito, yendo más allá del alcance de las tradicionales relaciones de incerteza de Heisenberg, de Robertson y de Schröndinger. Una de las formulaciones que desarrollamos es una extensión de la desigualdad de Landau y Pollak al caso de medidas de operadores con valores positivos y estados mixtos. Para lograr esto hicimos uso de un enfoque geométrico, definiendo la incerteza asociada al resultado de la medición de un observable a partir de métricas entre estados cuánticos. Esto nos permitió mostrar, entre otros resultados, que la métrica de Wootters da la desigualdad más restrictiva a las probabilidades máximas de los observables. La otra formulación que desarrollamos se basa en un enfoque informacional. Para ello introducimos una familia de entropías generalizadas que cuantifican la incerteza asociada a un vector de probabilidad. Obtuvimos relaciones de incerteza tipo entrópicas resolviendo el problema de minimización de la suma de entropías generalizadas sujeta a la desigualdad de Landau–Pollak. De esta manera, extendimos los resultados de de Vicente y Sánchez-Ruiz que consideraban la entropía de Shannon a otras entropías, medidas cuánticas generalizadas y estados mixtos. Asimismo, realizamos un estudio comparativo entre las cotas obtenidas y otras disponibles en la literatura, obteniendo que en muchas de las situaciones consideradas nuestra cota es más fuerte. Además, consideramos el caso del qubit de manera particular y obtuvimos la cota óptima para este caso. Por último, estudiamos la conexión entre los principios de incerteza y complementariedad, en el contexto del interferómetro de Mach–Zehnder. Encontramos que las relaciones de Schrödinger y de Landau–Pollak para ciertos observables son equivalentes a la relación de dualidad onda–corpúsculo. Con respecto a las relaciones usando entropías, la equivalencia depende de la elección de los índices entrópicos. En particular, si los índices son iguales no existe tal equivalencia. Mostramos que esta situación sirve para discernir entre los diferentes estados de mínima incerteza. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-09-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis info:eu-repo/semantics/acceptedVersion Tesis de doctorado http://purl.org/coar/resource_type/c_db06 info:ar-repo/semantics/tesisDoctoral |
format |
doctoralThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/39843 https://doi.org/10.35537/10915/39843 |
url |
http://sedici.unlp.edu.ar/handle/10915/39843 https://doi.org/10.35537/10915/39843 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/ar/ Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Argentina (CC BY-NC-ND 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615871275728896 |
score |
13.070432 |