Calibration of nonlinear variable loads based on manifold learning
- Autores
- Venere, Alejandro Javier; Hurtado, Martín; Muravchik, Carlos Horacio
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this work, we present a method for calibrating non-linear variable impedances based on the manifold-learning technique. This approach circumvents the dependency on the analytical model of the device, and works under the assumption that the impedance values come from a ”black box” controlled by a number of independent parameters. The goal of the calibration is to recover the unknown control parameters that set the load into the desired impedance states. We tested the proposed procedure first on a simulated example and then on the prototype presented in [1] at a frequency of 1575.42 MHz. The results based on both simulated and real data showed accurate recovery of the control parameters.
Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales - Materia
-
Ingeniería
Diffusion map
Manifold learning
Variable loads - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/154145
Ver los metadatos del registro completo
| id |
SEDICI_58e5c0bdc98525ab6ebc7160a1f1c059 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/154145 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Calibration of nonlinear variable loads based on manifold learningVenere, Alejandro JavierHurtado, MartínMuravchik, Carlos HoracioIngenieríaDiffusion mapManifold learningVariable loadsIn this work, we present a method for calibrating non-linear variable impedances based on the manifold-learning technique. This approach circumvents the dependency on the analytical model of the device, and works under the assumption that the impedance values come from a ”black box” controlled by a number of independent parameters. The goal of the calibration is to recover the unknown control parameters that set the load into the desired impedance states. We tested the proposed procedure first on a simulated example and then on the prototype presented in [1] at a frequency of 1575.42 MHz. The results based on both simulated and real data showed accurate recovery of the control parameters.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales2017-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/154145enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-544-754-7info:eu-repo/semantics/altIdentifier/doi/10.23919/RPIC.2017.8214362info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T13:19:13Zoai:sedici.unlp.edu.ar:10915/154145Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 13:19:13.484SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Calibration of nonlinear variable loads based on manifold learning |
| title |
Calibration of nonlinear variable loads based on manifold learning |
| spellingShingle |
Calibration of nonlinear variable loads based on manifold learning Venere, Alejandro Javier Ingeniería Diffusion map Manifold learning Variable loads |
| title_short |
Calibration of nonlinear variable loads based on manifold learning |
| title_full |
Calibration of nonlinear variable loads based on manifold learning |
| title_fullStr |
Calibration of nonlinear variable loads based on manifold learning |
| title_full_unstemmed |
Calibration of nonlinear variable loads based on manifold learning |
| title_sort |
Calibration of nonlinear variable loads based on manifold learning |
| dc.creator.none.fl_str_mv |
Venere, Alejandro Javier Hurtado, Martín Muravchik, Carlos Horacio |
| author |
Venere, Alejandro Javier |
| author_facet |
Venere, Alejandro Javier Hurtado, Martín Muravchik, Carlos Horacio |
| author_role |
author |
| author2 |
Hurtado, Martín Muravchik, Carlos Horacio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ingeniería Diffusion map Manifold learning Variable loads |
| topic |
Ingeniería Diffusion map Manifold learning Variable loads |
| dc.description.none.fl_txt_mv |
In this work, we present a method for calibrating non-linear variable impedances based on the manifold-learning technique. This approach circumvents the dependency on the analytical model of the device, and works under the assumption that the impedance values come from a ”black box” controlled by a number of independent parameters. The goal of the calibration is to recover the unknown control parameters that set the load into the desired impedance states. We tested the proposed procedure first on a simulated example and then on the prototype presented in [1] at a frequency of 1575.42 MHz. The results based on both simulated and real data showed accurate recovery of the control parameters. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales |
| description |
In this work, we present a method for calibrating non-linear variable impedances based on the manifold-learning technique. This approach circumvents the dependency on the analytical model of the device, and works under the assumption that the impedance values come from a ”black box” controlled by a number of independent parameters. The goal of the calibration is to recover the unknown control parameters that set the load into the desired impedance states. We tested the proposed procedure first on a simulated example and then on the prototype presented in [1] at a frequency of 1575.42 MHz. The results based on both simulated and real data showed accurate recovery of the control parameters. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/154145 |
| url |
http://sedici.unlp.edu.ar/handle/10915/154145 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-544-754-7 info:eu-repo/semantics/altIdentifier/doi/10.23919/RPIC.2017.8214362 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1847978833009967104 |
| score |
13.084122 |