Optimal reconstruction systems for erasures and for the q-potential

Autores
Massey, Pedro Gustavo
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we introduce the q-potential as an extension of the Benedetto-Fickus frame potential, defined on general reconstruction systems and show that protocols are the minimizers of this potential under certain restrictions. We extend recent results of B.G. Bodmann on the structure of optimal protocols with respect to 1 and 2 lost packets where the worst (normalized) reconstruction error is computed with respect to a compatible unitarily invariant norm. We finally describe necessary and sufficient (spectral) conditions, that we call q-fundamental inequalities, for the existence of protocols with prescribed properties by relating this problem to Klyachko's and Fulton's theory on sums of hermitian operators.
Facultad de Ciencias Exactas
Materia
Matemática
Compatible unitarily invariant norm
Erasures
q-Fundamental inequality
q-Potential
Reconstruction systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/82642

id SEDICI_57d3f474e30a89e552ff7305083e145e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/82642
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Optimal reconstruction systems for erasures and for the q-potentialMassey, Pedro GustavoMatemáticaCompatible unitarily invariant normErasuresq-Fundamental inequalityq-PotentialReconstruction systemsIn this paper we introduce the q-potential as an extension of the Benedetto-Fickus frame potential, defined on general reconstruction systems and show that protocols are the minimizers of this potential under certain restrictions. We extend recent results of B.G. Bodmann on the structure of optimal protocols with respect to 1 and 2 lost packets where the worst (normalized) reconstruction error is computed with respect to a compatible unitarily invariant norm. We finally describe necessary and sufficient (spectral) conditions, that we call q-fundamental inequalities, for the existence of protocols with prescribed properties by relating this problem to Klyachko's and Fulton's theory on sums of hermitian operators.Facultad de Ciencias Exactas2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1302-1316http://sedici.unlp.edu.ar/handle/10915/82642enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2009.05.001info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:56:23Zoai:sedici.unlp.edu.ar:10915/82642Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:56:23.498SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Optimal reconstruction systems for erasures and for the q-potential
title Optimal reconstruction systems for erasures and for the q-potential
spellingShingle Optimal reconstruction systems for erasures and for the q-potential
Massey, Pedro Gustavo
Matemática
Compatible unitarily invariant norm
Erasures
q-Fundamental inequality
q-Potential
Reconstruction systems
title_short Optimal reconstruction systems for erasures and for the q-potential
title_full Optimal reconstruction systems for erasures and for the q-potential
title_fullStr Optimal reconstruction systems for erasures and for the q-potential
title_full_unstemmed Optimal reconstruction systems for erasures and for the q-potential
title_sort Optimal reconstruction systems for erasures and for the q-potential
dc.creator.none.fl_str_mv Massey, Pedro Gustavo
author Massey, Pedro Gustavo
author_facet Massey, Pedro Gustavo
author_role author
dc.subject.none.fl_str_mv Matemática
Compatible unitarily invariant norm
Erasures
q-Fundamental inequality
q-Potential
Reconstruction systems
topic Matemática
Compatible unitarily invariant norm
Erasures
q-Fundamental inequality
q-Potential
Reconstruction systems
dc.description.none.fl_txt_mv In this paper we introduce the q-potential as an extension of the Benedetto-Fickus frame potential, defined on general reconstruction systems and show that protocols are the minimizers of this potential under certain restrictions. We extend recent results of B.G. Bodmann on the structure of optimal protocols with respect to 1 and 2 lost packets where the worst (normalized) reconstruction error is computed with respect to a compatible unitarily invariant norm. We finally describe necessary and sufficient (spectral) conditions, that we call q-fundamental inequalities, for the existence of protocols with prescribed properties by relating this problem to Klyachko's and Fulton's theory on sums of hermitian operators.
Facultad de Ciencias Exactas
description In this paper we introduce the q-potential as an extension of the Benedetto-Fickus frame potential, defined on general reconstruction systems and show that protocols are the minimizers of this potential under certain restrictions. We extend recent results of B.G. Bodmann on the structure of optimal protocols with respect to 1 and 2 lost packets where the worst (normalized) reconstruction error is computed with respect to a compatible unitarily invariant norm. We finally describe necessary and sufficient (spectral) conditions, that we call q-fundamental inequalities, for the existence of protocols with prescribed properties by relating this problem to Klyachko's and Fulton's theory on sums of hermitian operators.
publishDate 2009
dc.date.none.fl_str_mv 2009
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/82642
url http://sedici.unlp.edu.ar/handle/10915/82642
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0024-3795
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2009.05.001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
1302-1316
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783169146126336
score 12.982451