Optimal reconstruction systems for erasures and for the q-potential
- Autores
- Massey, Pedro Gustavo
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we introduce the q-potential as an extension of the Benedetto-Fickus frame potential, defined on general reconstruction systems and show that protocols are the minimizers of this potential under certain restrictions. We extend recent results of B.G. Bodmann on the structure of optimal protocols with respect to 1 and 2 lost packets where the worst (normalized) reconstruction error is computed with respect to a compatible unitarily invariant norm. We finally describe necessary and sufficient (spectral) conditions, that we call q-fundamental inequalities, for the existence of protocols with prescribed properties by relating this problem to Klyachko's and Fulton's theory on sums of hermitian operators.
Facultad de Ciencias Exactas - Materia
-
Matemática
Compatible unitarily invariant norm
Erasures
q-Fundamental inequality
q-Potential
Reconstruction systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/82642
Ver los metadatos del registro completo
| id |
SEDICI_57d3f474e30a89e552ff7305083e145e |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/82642 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Optimal reconstruction systems for erasures and for the q-potentialMassey, Pedro GustavoMatemáticaCompatible unitarily invariant normErasuresq-Fundamental inequalityq-PotentialReconstruction systemsIn this paper we introduce the q-potential as an extension of the Benedetto-Fickus frame potential, defined on general reconstruction systems and show that protocols are the minimizers of this potential under certain restrictions. We extend recent results of B.G. Bodmann on the structure of optimal protocols with respect to 1 and 2 lost packets where the worst (normalized) reconstruction error is computed with respect to a compatible unitarily invariant norm. We finally describe necessary and sufficient (spectral) conditions, that we call q-fundamental inequalities, for the existence of protocols with prescribed properties by relating this problem to Klyachko's and Fulton's theory on sums of hermitian operators.Facultad de Ciencias Exactas2009info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1302-1316http://sedici.unlp.edu.ar/handle/10915/82642enginfo:eu-repo/semantics/altIdentifier/issn/0024-3795info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2009.05.001info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:56:23Zoai:sedici.unlp.edu.ar:10915/82642Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:56:23.498SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Optimal reconstruction systems for erasures and for the q-potential |
| title |
Optimal reconstruction systems for erasures and for the q-potential |
| spellingShingle |
Optimal reconstruction systems for erasures and for the q-potential Massey, Pedro Gustavo Matemática Compatible unitarily invariant norm Erasures q-Fundamental inequality q-Potential Reconstruction systems |
| title_short |
Optimal reconstruction systems for erasures and for the q-potential |
| title_full |
Optimal reconstruction systems for erasures and for the q-potential |
| title_fullStr |
Optimal reconstruction systems for erasures and for the q-potential |
| title_full_unstemmed |
Optimal reconstruction systems for erasures and for the q-potential |
| title_sort |
Optimal reconstruction systems for erasures and for the q-potential |
| dc.creator.none.fl_str_mv |
Massey, Pedro Gustavo |
| author |
Massey, Pedro Gustavo |
| author_facet |
Massey, Pedro Gustavo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Matemática Compatible unitarily invariant norm Erasures q-Fundamental inequality q-Potential Reconstruction systems |
| topic |
Matemática Compatible unitarily invariant norm Erasures q-Fundamental inequality q-Potential Reconstruction systems |
| dc.description.none.fl_txt_mv |
In this paper we introduce the q-potential as an extension of the Benedetto-Fickus frame potential, defined on general reconstruction systems and show that protocols are the minimizers of this potential under certain restrictions. We extend recent results of B.G. Bodmann on the structure of optimal protocols with respect to 1 and 2 lost packets where the worst (normalized) reconstruction error is computed with respect to a compatible unitarily invariant norm. We finally describe necessary and sufficient (spectral) conditions, that we call q-fundamental inequalities, for the existence of protocols with prescribed properties by relating this problem to Klyachko's and Fulton's theory on sums of hermitian operators. Facultad de Ciencias Exactas |
| description |
In this paper we introduce the q-potential as an extension of the Benedetto-Fickus frame potential, defined on general reconstruction systems and show that protocols are the minimizers of this potential under certain restrictions. We extend recent results of B.G. Bodmann on the structure of optimal protocols with respect to 1 and 2 lost packets where the worst (normalized) reconstruction error is computed with respect to a compatible unitarily invariant norm. We finally describe necessary and sufficient (spectral) conditions, that we call q-fundamental inequalities, for the existence of protocols with prescribed properties by relating this problem to Klyachko's and Fulton's theory on sums of hermitian operators. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/82642 |
| url |
http://sedici.unlp.edu.ar/handle/10915/82642 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0024-3795 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2009.05.001 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 1302-1316 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846783169146126336 |
| score |
12.982451 |