Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos

Autores
Eyrea Irazú, María Emma
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión aceptada
Colaborador/a o director/a de tesis
Zuccalli, Marcela
Colombo, Leonardo Jesús
Descripción
Las aplicaciones de técnicas provenientes de la Geometría Diferencial moderna y la Topología han ayudado a una mayor comprensión de los problemas provenientes de la teoría de Sistemas Dinámicos. Estas aplicaciones han reformulado la mecánica analítica y clásica en un lenguaje geométrico que junto a nuevos métodos analíticos, topológicos y numéricos conforman una nueva área de investigación en matemática y física llamada Mecánica Geométrica. La Mecánica Geométrica se configura como un punto de encuentro de disciplinas diversas como la Mecánica, la Geometría, el Análisis, el Álgebra, el Análisis Numérico, las Ecuaciones en Derivadas Parciales, entre otras. Actualmente, la Mecánica Geométrica es un área de investigación pujante con fructíferas conexiones con otras disciplinas como la Teoría de Control no-lineal y los Sistemas Dinámicos. El objetivo de la Teoría de Control es determinar el comportamiento de un sistema dinámico por medio de acciones externas de forma que se cumplan ciertas condiciones prefijadas, como por ejemplo, que haya un extremo fijo, los dos, que ciertas variables no alcancen algunos valores u otro tipo de situaciones más o menos complicadas. Las aplicaciones de la Mecánica Geométrica en Teoría de Control han causado grandes progresos de esta área de investigación. Por otro lado, los sistemas híbridos son sistemas dinámicos que poseen dos componentes particulares en su dinámica: una dinámica a tiempo continua y una dinámica discreta. Estos sistemas son capaces de modelar varios sistemas ingenieriles como por ejemplo robots bípedos y el trabajo cooperativo con drones. La teoría de reducción es uno de los temas más estudiados de la Mecánica Geométrica. El punto de partida de todos los trabajos que estudian este tema es eliminar variables asociadas con un grupo de simetrías para reducir los grados de libertad de un sistema mecánico. En Mecánica Geométrica, las variedades simplécticas son utilizadas como espacios de fases de momentos, es decir, fibrados cotangentes en un espacio de configuración Q. En ese caso, las variedades simplécticas son los espacios naturales en las cuales se realiza la formulación Hamiltoniana de la Mecánica Clásica en el sentido autónomo. Dado un grupo de Lie, si el grupo de Lie actúa en Q, entonces se puede reducir la variedad simpléctica con respecto a la correspondiente acción levantada al cotangente y la aplicación momento canónica. Una de la formulaciones modernas de la teoría de reducción es conocida como reducción simpléctica o reducción de Marsden-Weinstein. La idea principal es la siguiente: suponer que un grupo de Lie actúa simplécticamente en una variedad simpléctica y que la aplicación momento está dada. El conjunto de nivel de esta aplicación, está equipado con una 2-forma canónica cerrada que generalmente no es no-degenerada. Bajo ciertas condiciones, se puede cocientar con respecto al grupo de isotropía para así eliminar las variables degeneradas y obtener una nueva 2-forma que resulta ser simpléctica. En el marco de sistemas que dependen explícitamente del tiempo, la situación es diferente. El espacio de configuraciones es una variedad diferenciable con su parte en el conjunto de números reales. Uno puede pensar en aplicar nuevamente los resultados conocidos a este nuevo marco y realizar una teoría análoga dependiente en el tiempo. En esta Tesis, el estudio de reducción por simetrías para sistemas Lagrangianos y Hamiltonianos híbridos es desarrollado en profundidad generalizando los resultados ya conocidos. Todos los distintos procesos de reducción que aparecen en mecánica de sistemas a tiempo continuo, de una u otra manera, pueden ser llevados a cabo en el contexto híbrido y así conseguir un sistema equivalente (que luego recuperará la solución del original) más fácil de resolver. El presente trabajo de investigación incluye nuevos resultados en el área de la Mecánica Geométrica que permiten el estudio de sistemas mecánicos (en particular sobre técnicas de reducción aplicadas en distintos contextos), su aplicación a la teoría de control y a los sistemas híbridos con y sin dependencia del tiempo. Presentamos una nueva formulación geométrica para la dinámica de los sistemas mecánicos de orden superior reducidos y la existencia de términos magnéticos, tanto en estos sistemas como en los sistemas mecánicos híbridos, que aparecen luego de aplicar un proceso de reducción Hamiltoniana. El trabajo desarrollado en esta Tesis contribuye a la Mecánica de Orden Superior, la Mecánica Discreta, la Teoría de reducción, la estabilidad y reducción de los Sistemas Mecánicos Híbridos, la Geometría Cosimpléctica y la Teoría de Control Geométrico.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
Materia
Matemática
Mecánica geométrica
Reducción por simetrías
Teoría de control geométrico
Sistemas mecánicos híbridos
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-nd/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/117869

id SEDICI_54fe4a273dd47375429aeab2adf79bee
oai_identifier_str oai:sedici.unlp.edu.ar:10915/117869
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticosEyrea Irazú, María EmmaMatemáticaMecánica geométricaReducción por simetríasTeoría de control geométricoSistemas mecánicos híbridosLas aplicaciones de técnicas provenientes de la Geometría Diferencial moderna y la Topología han ayudado a una mayor comprensión de los problemas provenientes de la teoría de Sistemas Dinámicos. Estas aplicaciones han reformulado la mecánica analítica y clásica en un lenguaje geométrico que junto a nuevos métodos analíticos, topológicos y numéricos conforman una nueva área de investigación en matemática y física llamada Mecánica Geométrica. La Mecánica Geométrica se configura como un punto de encuentro de disciplinas diversas como la Mecánica, la Geometría, el Análisis, el Álgebra, el Análisis Numérico, las Ecuaciones en Derivadas Parciales, entre otras. Actualmente, la Mecánica Geométrica es un área de investigación pujante con fructíferas conexiones con otras disciplinas como la Teoría de Control no-lineal y los Sistemas Dinámicos. El objetivo de la Teoría de Control es determinar el comportamiento de un sistema dinámico por medio de acciones externas de forma que se cumplan ciertas condiciones prefijadas, como por ejemplo, que haya un extremo fijo, los dos, que ciertas variables no alcancen algunos valores u otro tipo de situaciones más o menos complicadas. Las aplicaciones de la Mecánica Geométrica en Teoría de Control han causado grandes progresos de esta área de investigación. Por otro lado, los sistemas híbridos son sistemas dinámicos que poseen dos componentes particulares en su dinámica: una dinámica a tiempo continua y una dinámica discreta. Estos sistemas son capaces de modelar varios sistemas ingenieriles como por ejemplo robots bípedos y el trabajo cooperativo con drones. La teoría de reducción es uno de los temas más estudiados de la Mecánica Geométrica. El punto de partida de todos los trabajos que estudian este tema es eliminar variables asociadas con un grupo de simetrías para reducir los grados de libertad de un sistema mecánico. En Mecánica Geométrica, las variedades simplécticas son utilizadas como espacios de fases de momentos, es decir, fibrados cotangentes en un espacio de configuración Q. En ese caso, las variedades simplécticas son los espacios naturales en las cuales se realiza la formulación Hamiltoniana de la Mecánica Clásica en el sentido autónomo. Dado un grupo de Lie, si el grupo de Lie actúa en Q, entonces se puede reducir la variedad simpléctica con respecto a la correspondiente acción levantada al cotangente y la aplicación momento canónica. Una de la formulaciones modernas de la teoría de reducción es conocida como reducción simpléctica o reducción de Marsden-Weinstein. La idea principal es la siguiente: suponer que un grupo de Lie actúa simplécticamente en una variedad simpléctica y que la aplicación momento está dada. El conjunto de nivel de esta aplicación, está equipado con una 2-forma canónica cerrada que generalmente no es no-degenerada. Bajo ciertas condiciones, se puede cocientar con respecto al grupo de isotropía para así eliminar las variables degeneradas y obtener una nueva 2-forma que resulta ser simpléctica. En el marco de sistemas que dependen explícitamente del tiempo, la situación es diferente. El espacio de configuraciones es una variedad diferenciable con su parte en el conjunto de números reales. Uno puede pensar en aplicar nuevamente los resultados conocidos a este nuevo marco y realizar una teoría análoga dependiente en el tiempo. En esta Tesis, el estudio de reducción por simetrías para sistemas Lagrangianos y Hamiltonianos híbridos es desarrollado en profundidad generalizando los resultados ya conocidos. Todos los distintos procesos de reducción que aparecen en mecánica de sistemas a tiempo continuo, de una u otra manera, pueden ser llevados a cabo en el contexto híbrido y así conseguir un sistema equivalente (que luego recuperará la solución del original) más fácil de resolver. El presente trabajo de investigación incluye nuevos resultados en el área de la Mecánica Geométrica que permiten el estudio de sistemas mecánicos (en particular sobre técnicas de reducción aplicadas en distintos contextos), su aplicación a la teoría de control y a los sistemas híbridos con y sin dependencia del tiempo. Presentamos una nueva formulación geométrica para la dinámica de los sistemas mecánicos de orden superior reducidos y la existencia de términos magnéticos, tanto en estos sistemas como en los sistemas mecánicos híbridos, que aparecen luego de aplicar un proceso de reducción Hamiltoniana. El trabajo desarrollado en esta Tesis contribuye a la Mecánica de Orden Superior, la Mecánica Discreta, la Teoría de reducción, la estabilidad y reducción de los Sistemas Mecánicos Híbridos, la Geometría Cosimpléctica y la Teoría de Control Geométrico.Doctor en Ciencias Exactas, área MatemáticaUniversidad Nacional de La PlataFacultad de Ciencias ExactasZuccalli, MarcelaColombo, Leonardo Jesús2019-12-18info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionTesis de doctoradohttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/117869https://doi.org/10.35537/10915/117869spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:19:35Zoai:sedici.unlp.edu.ar:10915/117869Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:19:36.166SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos
title Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos
spellingShingle Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos
Eyrea Irazú, María Emma
Matemática
Mecánica geométrica
Reducción por simetrías
Teoría de control geométrico
Sistemas mecánicos híbridos
title_short Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos
title_full Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos
title_fullStr Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos
title_full_unstemmed Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos
title_sort Aspectos geométricos y numéricos de los sistemas mecánicos con términos magnéticos
dc.creator.none.fl_str_mv Eyrea Irazú, María Emma
author Eyrea Irazú, María Emma
author_facet Eyrea Irazú, María Emma
author_role author
dc.contributor.none.fl_str_mv Zuccalli, Marcela
Colombo, Leonardo Jesús
dc.subject.none.fl_str_mv Matemática
Mecánica geométrica
Reducción por simetrías
Teoría de control geométrico
Sistemas mecánicos híbridos
topic Matemática
Mecánica geométrica
Reducción por simetrías
Teoría de control geométrico
Sistemas mecánicos híbridos
dc.description.none.fl_txt_mv Las aplicaciones de técnicas provenientes de la Geometría Diferencial moderna y la Topología han ayudado a una mayor comprensión de los problemas provenientes de la teoría de Sistemas Dinámicos. Estas aplicaciones han reformulado la mecánica analítica y clásica en un lenguaje geométrico que junto a nuevos métodos analíticos, topológicos y numéricos conforman una nueva área de investigación en matemática y física llamada Mecánica Geométrica. La Mecánica Geométrica se configura como un punto de encuentro de disciplinas diversas como la Mecánica, la Geometría, el Análisis, el Álgebra, el Análisis Numérico, las Ecuaciones en Derivadas Parciales, entre otras. Actualmente, la Mecánica Geométrica es un área de investigación pujante con fructíferas conexiones con otras disciplinas como la Teoría de Control no-lineal y los Sistemas Dinámicos. El objetivo de la Teoría de Control es determinar el comportamiento de un sistema dinámico por medio de acciones externas de forma que se cumplan ciertas condiciones prefijadas, como por ejemplo, que haya un extremo fijo, los dos, que ciertas variables no alcancen algunos valores u otro tipo de situaciones más o menos complicadas. Las aplicaciones de la Mecánica Geométrica en Teoría de Control han causado grandes progresos de esta área de investigación. Por otro lado, los sistemas híbridos son sistemas dinámicos que poseen dos componentes particulares en su dinámica: una dinámica a tiempo continua y una dinámica discreta. Estos sistemas son capaces de modelar varios sistemas ingenieriles como por ejemplo robots bípedos y el trabajo cooperativo con drones. La teoría de reducción es uno de los temas más estudiados de la Mecánica Geométrica. El punto de partida de todos los trabajos que estudian este tema es eliminar variables asociadas con un grupo de simetrías para reducir los grados de libertad de un sistema mecánico. En Mecánica Geométrica, las variedades simplécticas son utilizadas como espacios de fases de momentos, es decir, fibrados cotangentes en un espacio de configuración Q. En ese caso, las variedades simplécticas son los espacios naturales en las cuales se realiza la formulación Hamiltoniana de la Mecánica Clásica en el sentido autónomo. Dado un grupo de Lie, si el grupo de Lie actúa en Q, entonces se puede reducir la variedad simpléctica con respecto a la correspondiente acción levantada al cotangente y la aplicación momento canónica. Una de la formulaciones modernas de la teoría de reducción es conocida como reducción simpléctica o reducción de Marsden-Weinstein. La idea principal es la siguiente: suponer que un grupo de Lie actúa simplécticamente en una variedad simpléctica y que la aplicación momento está dada. El conjunto de nivel de esta aplicación, está equipado con una 2-forma canónica cerrada que generalmente no es no-degenerada. Bajo ciertas condiciones, se puede cocientar con respecto al grupo de isotropía para así eliminar las variables degeneradas y obtener una nueva 2-forma que resulta ser simpléctica. En el marco de sistemas que dependen explícitamente del tiempo, la situación es diferente. El espacio de configuraciones es una variedad diferenciable con su parte en el conjunto de números reales. Uno puede pensar en aplicar nuevamente los resultados conocidos a este nuevo marco y realizar una teoría análoga dependiente en el tiempo. En esta Tesis, el estudio de reducción por simetrías para sistemas Lagrangianos y Hamiltonianos híbridos es desarrollado en profundidad generalizando los resultados ya conocidos. Todos los distintos procesos de reducción que aparecen en mecánica de sistemas a tiempo continuo, de una u otra manera, pueden ser llevados a cabo en el contexto híbrido y así conseguir un sistema equivalente (que luego recuperará la solución del original) más fácil de resolver. El presente trabajo de investigación incluye nuevos resultados en el área de la Mecánica Geométrica que permiten el estudio de sistemas mecánicos (en particular sobre técnicas de reducción aplicadas en distintos contextos), su aplicación a la teoría de control y a los sistemas híbridos con y sin dependencia del tiempo. Presentamos una nueva formulación geométrica para la dinámica de los sistemas mecánicos de orden superior reducidos y la existencia de términos magnéticos, tanto en estos sistemas como en los sistemas mecánicos híbridos, que aparecen luego de aplicar un proceso de reducción Hamiltoniana. El trabajo desarrollado en esta Tesis contribuye a la Mecánica de Orden Superior, la Mecánica Discreta, la Teoría de reducción, la estabilidad y reducción de los Sistemas Mecánicos Híbridos, la Geometría Cosimpléctica y la Teoría de Control Geométrico.
Doctor en Ciencias Exactas, área Matemática
Universidad Nacional de La Plata
Facultad de Ciencias Exactas
description Las aplicaciones de técnicas provenientes de la Geometría Diferencial moderna y la Topología han ayudado a una mayor comprensión de los problemas provenientes de la teoría de Sistemas Dinámicos. Estas aplicaciones han reformulado la mecánica analítica y clásica en un lenguaje geométrico que junto a nuevos métodos analíticos, topológicos y numéricos conforman una nueva área de investigación en matemática y física llamada Mecánica Geométrica. La Mecánica Geométrica se configura como un punto de encuentro de disciplinas diversas como la Mecánica, la Geometría, el Análisis, el Álgebra, el Análisis Numérico, las Ecuaciones en Derivadas Parciales, entre otras. Actualmente, la Mecánica Geométrica es un área de investigación pujante con fructíferas conexiones con otras disciplinas como la Teoría de Control no-lineal y los Sistemas Dinámicos. El objetivo de la Teoría de Control es determinar el comportamiento de un sistema dinámico por medio de acciones externas de forma que se cumplan ciertas condiciones prefijadas, como por ejemplo, que haya un extremo fijo, los dos, que ciertas variables no alcancen algunos valores u otro tipo de situaciones más o menos complicadas. Las aplicaciones de la Mecánica Geométrica en Teoría de Control han causado grandes progresos de esta área de investigación. Por otro lado, los sistemas híbridos son sistemas dinámicos que poseen dos componentes particulares en su dinámica: una dinámica a tiempo continua y una dinámica discreta. Estos sistemas son capaces de modelar varios sistemas ingenieriles como por ejemplo robots bípedos y el trabajo cooperativo con drones. La teoría de reducción es uno de los temas más estudiados de la Mecánica Geométrica. El punto de partida de todos los trabajos que estudian este tema es eliminar variables asociadas con un grupo de simetrías para reducir los grados de libertad de un sistema mecánico. En Mecánica Geométrica, las variedades simplécticas son utilizadas como espacios de fases de momentos, es decir, fibrados cotangentes en un espacio de configuración Q. En ese caso, las variedades simplécticas son los espacios naturales en las cuales se realiza la formulación Hamiltoniana de la Mecánica Clásica en el sentido autónomo. Dado un grupo de Lie, si el grupo de Lie actúa en Q, entonces se puede reducir la variedad simpléctica con respecto a la correspondiente acción levantada al cotangente y la aplicación momento canónica. Una de la formulaciones modernas de la teoría de reducción es conocida como reducción simpléctica o reducción de Marsden-Weinstein. La idea principal es la siguiente: suponer que un grupo de Lie actúa simplécticamente en una variedad simpléctica y que la aplicación momento está dada. El conjunto de nivel de esta aplicación, está equipado con una 2-forma canónica cerrada que generalmente no es no-degenerada. Bajo ciertas condiciones, se puede cocientar con respecto al grupo de isotropía para así eliminar las variables degeneradas y obtener una nueva 2-forma que resulta ser simpléctica. En el marco de sistemas que dependen explícitamente del tiempo, la situación es diferente. El espacio de configuraciones es una variedad diferenciable con su parte en el conjunto de números reales. Uno puede pensar en aplicar nuevamente los resultados conocidos a este nuevo marco y realizar una teoría análoga dependiente en el tiempo. En esta Tesis, el estudio de reducción por simetrías para sistemas Lagrangianos y Hamiltonianos híbridos es desarrollado en profundidad generalizando los resultados ya conocidos. Todos los distintos procesos de reducción que aparecen en mecánica de sistemas a tiempo continuo, de una u otra manera, pueden ser llevados a cabo en el contexto híbrido y así conseguir un sistema equivalente (que luego recuperará la solución del original) más fácil de resolver. El presente trabajo de investigación incluye nuevos resultados en el área de la Mecánica Geométrica que permiten el estudio de sistemas mecánicos (en particular sobre técnicas de reducción aplicadas en distintos contextos), su aplicación a la teoría de control y a los sistemas híbridos con y sin dependencia del tiempo. Presentamos una nueva formulación geométrica para la dinámica de los sistemas mecánicos de orden superior reducidos y la existencia de términos magnéticos, tanto en estos sistemas como en los sistemas mecánicos híbridos, que aparecen luego de aplicar un proceso de reducción Hamiltoniana. El trabajo desarrollado en esta Tesis contribuye a la Mecánica de Orden Superior, la Mecánica Discreta, la Teoría de reducción, la estabilidad y reducción de los Sistemas Mecánicos Híbridos, la Geometría Cosimpléctica y la Teoría de Control Geométrico.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-18
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/acceptedVersion
Tesis de doctorado
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/117869
https://doi.org/10.35537/10915/117869
url http://sedici.unlp.edu.ar/handle/10915/117869
https://doi.org/10.35537/10915/117869
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064253024337920
score 13.22299