Modelling medical diagnosis through kohonen self-organizable map
- Autores
- De Carvalho, Lucimar F. d; Dani, Candice Abella S. D; De Carvalho, Hugo T. d; Nassar, Silvia M. N; Azevedo, Fernando M.; Dozza, Diego D.; Brasil, Ana Luisa C.
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The objective of this work is the consideration and implementation of some basic premises used in the learning process in Artificial Neural Networks (ANN`s). Initially the net will be trained starting from the Neusciences simulator: ActiveX to, starting from the result of this simulation, be compared with the algorithm of competitive learning through the Kohonen Self-Organizable Map. The chosen domain for the implementation of the learning algorithms was the application in the Clinical Diagnosis of the Convulsive Crises, based on the International Classification League Against Epilepsy ILAI/81. According to the results of the simulator and using the Learning Vector Quantization (LVQ1) technique with the 2x2 configuration, the base of training of the network showed a performance of 69,76 and 71,31% respectively. For the test set of the simulator and the LVQ1 technique the network obtained an index satisfactory of classification of 80% and 100% respectively. With the 5x5 configuration to increase the index of classification.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Artificial Neural Networks
Convulsive Crisis
Artificial Intelligence - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/183231
Ver los metadatos del registro completo
id |
SEDICI_54899f4a3db2d488ee40ab104cbd62b1 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/183231 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Modelling medical diagnosis through kohonen self-organizable mapDe Carvalho, Lucimar F. dDani, Candice Abella S. DDe Carvalho, Hugo T. dNassar, Silvia M. NAzevedo, Fernando M.Dozza, Diego D.Brasil, Ana Luisa C.Ciencias InformáticasArtificial Neural NetworksConvulsive CrisisArtificial IntelligenceThe objective of this work is the consideration and implementation of some basic premises used in the learning process in Artificial Neural Networks (ANN`s). Initially the net will be trained starting from the Neusciences simulator: ActiveX to, starting from the result of this simulation, be compared with the algorithm of competitive learning through the Kohonen Self-Organizable Map. The chosen domain for the implementation of the learning algorithms was the application in the Clinical Diagnosis of the Convulsive Crises, based on the International Classification League Against Epilepsy ILAI/81. According to the results of the simulator and using the Learning Vector Quantization (LVQ1) technique with the 2x2 configuration, the base of training of the network showed a performance of 69,76 and 71,31% respectively. For the test set of the simulator and the LVQ1 technique the network obtained an index satisfactory of classification of 80% and 100% respectively. With the 5x5 configuration to increase the index of classification.Sociedad Argentina de Informática e Investigación Operativa2002info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf255-261http://sedici.unlp.edu.ar/handle/10915/183231enginfo:eu-repo/semantics/altIdentifier/issn/1660-1079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:50:02Zoai:sedici.unlp.edu.ar:10915/183231Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:50:03.082SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Modelling medical diagnosis through kohonen self-organizable map |
title |
Modelling medical diagnosis through kohonen self-organizable map |
spellingShingle |
Modelling medical diagnosis through kohonen self-organizable map De Carvalho, Lucimar F. d Ciencias Informáticas Artificial Neural Networks Convulsive Crisis Artificial Intelligence |
title_short |
Modelling medical diagnosis through kohonen self-organizable map |
title_full |
Modelling medical diagnosis through kohonen self-organizable map |
title_fullStr |
Modelling medical diagnosis through kohonen self-organizable map |
title_full_unstemmed |
Modelling medical diagnosis through kohonen self-organizable map |
title_sort |
Modelling medical diagnosis through kohonen self-organizable map |
dc.creator.none.fl_str_mv |
De Carvalho, Lucimar F. d Dani, Candice Abella S. D De Carvalho, Hugo T. d Nassar, Silvia M. N Azevedo, Fernando M. Dozza, Diego D. Brasil, Ana Luisa C. |
author |
De Carvalho, Lucimar F. d |
author_facet |
De Carvalho, Lucimar F. d Dani, Candice Abella S. D De Carvalho, Hugo T. d Nassar, Silvia M. N Azevedo, Fernando M. Dozza, Diego D. Brasil, Ana Luisa C. |
author_role |
author |
author2 |
Dani, Candice Abella S. D De Carvalho, Hugo T. d Nassar, Silvia M. N Azevedo, Fernando M. Dozza, Diego D. Brasil, Ana Luisa C. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Artificial Neural Networks Convulsive Crisis Artificial Intelligence |
topic |
Ciencias Informáticas Artificial Neural Networks Convulsive Crisis Artificial Intelligence |
dc.description.none.fl_txt_mv |
The objective of this work is the consideration and implementation of some basic premises used in the learning process in Artificial Neural Networks (ANN`s). Initially the net will be trained starting from the Neusciences simulator: ActiveX to, starting from the result of this simulation, be compared with the algorithm of competitive learning through the Kohonen Self-Organizable Map. The chosen domain for the implementation of the learning algorithms was the application in the Clinical Diagnosis of the Convulsive Crises, based on the International Classification League Against Epilepsy ILAI/81. According to the results of the simulator and using the Learning Vector Quantization (LVQ1) technique with the 2x2 configuration, the base of training of the network showed a performance of 69,76 and 71,31% respectively. For the test set of the simulator and the LVQ1 technique the network obtained an index satisfactory of classification of 80% and 100% respectively. With the 5x5 configuration to increase the index of classification. Sociedad Argentina de Informática e Investigación Operativa |
description |
The objective of this work is the consideration and implementation of some basic premises used in the learning process in Artificial Neural Networks (ANN`s). Initially the net will be trained starting from the Neusciences simulator: ActiveX to, starting from the result of this simulation, be compared with the algorithm of competitive learning through the Kohonen Self-Organizable Map. The chosen domain for the implementation of the learning algorithms was the application in the Clinical Diagnosis of the Convulsive Crises, based on the International Classification League Against Epilepsy ILAI/81. According to the results of the simulator and using the Learning Vector Quantization (LVQ1) technique with the 2x2 configuration, the base of training of the network showed a performance of 69,76 and 71,31% respectively. For the test set of the simulator and the LVQ1 technique the network obtained an index satisfactory of classification of 80% and 100% respectively. With the 5x5 configuration to increase the index of classification. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/183231 |
url |
http://sedici.unlp.edu.ar/handle/10915/183231 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1660-1079 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 255-261 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616360101937152 |
score |
13.070432 |