Modelling medical diagnosis through kohonen self-organizable map

Autores
De Carvalho, Lucimar F. d; Dani, Candice Abella S. D; De Carvalho, Hugo T. d; Nassar, Silvia M. N; Azevedo, Fernando M.; Dozza, Diego D.; Brasil, Ana Luisa C.
Año de publicación
2002
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
The objective of this work is the consideration and implementation of some basic premises used in the learning process in Artificial Neural Networks (ANN`s). Initially the net will be trained starting from the Neusciences simulator: ActiveX to, starting from the result of this simulation, be compared with the algorithm of competitive learning through the Kohonen Self-Organizable Map. The chosen domain for the implementation of the learning algorithms was the application in the Clinical Diagnosis of the Convulsive Crises, based on the International Classification League Against Epilepsy ILAI/81. According to the results of the simulator and using the Learning Vector Quantization (LVQ1) technique with the 2x2 configuration, the base of training of the network showed a performance of 69,76 and 71,31% respectively. For the test set of the simulator and the LVQ1 technique the network obtained an index satisfactory of classification of 80% and 100% respectively. With the 5x5 configuration to increase the index of classification.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Artificial Neural Networks
Convulsive Crisis
Artificial Intelligence
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/183231

id SEDICI_54899f4a3db2d488ee40ab104cbd62b1
oai_identifier_str oai:sedici.unlp.edu.ar:10915/183231
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Modelling medical diagnosis through kohonen self-organizable mapDe Carvalho, Lucimar F. dDani, Candice Abella S. DDe Carvalho, Hugo T. dNassar, Silvia M. NAzevedo, Fernando M.Dozza, Diego D.Brasil, Ana Luisa C.Ciencias InformáticasArtificial Neural NetworksConvulsive CrisisArtificial IntelligenceThe objective of this work is the consideration and implementation of some basic premises used in the learning process in Artificial Neural Networks (ANN`s). Initially the net will be trained starting from the Neusciences simulator: ActiveX to, starting from the result of this simulation, be compared with the algorithm of competitive learning through the Kohonen Self-Organizable Map. The chosen domain for the implementation of the learning algorithms was the application in the Clinical Diagnosis of the Convulsive Crises, based on the International Classification League Against Epilepsy ILAI/81. According to the results of the simulator and using the Learning Vector Quantization (LVQ1) technique with the 2x2 configuration, the base of training of the network showed a performance of 69,76 and 71,31% respectively. For the test set of the simulator and the LVQ1 technique the network obtained an index satisfactory of classification of 80% and 100% respectively. With the 5x5 configuration to increase the index of classification.Sociedad Argentina de Informática e Investigación Operativa2002info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf255-261http://sedici.unlp.edu.ar/handle/10915/183231enginfo:eu-repo/semantics/altIdentifier/issn/1660-1079info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:50:02Zoai:sedici.unlp.edu.ar:10915/183231Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:50:03.082SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Modelling medical diagnosis through kohonen self-organizable map
title Modelling medical diagnosis through kohonen self-organizable map
spellingShingle Modelling medical diagnosis through kohonen self-organizable map
De Carvalho, Lucimar F. d
Ciencias Informáticas
Artificial Neural Networks
Convulsive Crisis
Artificial Intelligence
title_short Modelling medical diagnosis through kohonen self-organizable map
title_full Modelling medical diagnosis through kohonen self-organizable map
title_fullStr Modelling medical diagnosis through kohonen self-organizable map
title_full_unstemmed Modelling medical diagnosis through kohonen self-organizable map
title_sort Modelling medical diagnosis through kohonen self-organizable map
dc.creator.none.fl_str_mv De Carvalho, Lucimar F. d
Dani, Candice Abella S. D
De Carvalho, Hugo T. d
Nassar, Silvia M. N
Azevedo, Fernando M.
Dozza, Diego D.
Brasil, Ana Luisa C.
author De Carvalho, Lucimar F. d
author_facet De Carvalho, Lucimar F. d
Dani, Candice Abella S. D
De Carvalho, Hugo T. d
Nassar, Silvia M. N
Azevedo, Fernando M.
Dozza, Diego D.
Brasil, Ana Luisa C.
author_role author
author2 Dani, Candice Abella S. D
De Carvalho, Hugo T. d
Nassar, Silvia M. N
Azevedo, Fernando M.
Dozza, Diego D.
Brasil, Ana Luisa C.
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Artificial Neural Networks
Convulsive Crisis
Artificial Intelligence
topic Ciencias Informáticas
Artificial Neural Networks
Convulsive Crisis
Artificial Intelligence
dc.description.none.fl_txt_mv The objective of this work is the consideration and implementation of some basic premises used in the learning process in Artificial Neural Networks (ANN`s). Initially the net will be trained starting from the Neusciences simulator: ActiveX to, starting from the result of this simulation, be compared with the algorithm of competitive learning through the Kohonen Self-Organizable Map. The chosen domain for the implementation of the learning algorithms was the application in the Clinical Diagnosis of the Convulsive Crises, based on the International Classification League Against Epilepsy ILAI/81. According to the results of the simulator and using the Learning Vector Quantization (LVQ1) technique with the 2x2 configuration, the base of training of the network showed a performance of 69,76 and 71,31% respectively. For the test set of the simulator and the LVQ1 technique the network obtained an index satisfactory of classification of 80% and 100% respectively. With the 5x5 configuration to increase the index of classification.
Sociedad Argentina de Informática e Investigación Operativa
description The objective of this work is the consideration and implementation of some basic premises used in the learning process in Artificial Neural Networks (ANN`s). Initially the net will be trained starting from the Neusciences simulator: ActiveX to, starting from the result of this simulation, be compared with the algorithm of competitive learning through the Kohonen Self-Organizable Map. The chosen domain for the implementation of the learning algorithms was the application in the Clinical Diagnosis of the Convulsive Crises, based on the International Classification League Against Epilepsy ILAI/81. According to the results of the simulator and using the Learning Vector Quantization (LVQ1) technique with the 2x2 configuration, the base of training of the network showed a performance of 69,76 and 71,31% respectively. For the test set of the simulator and the LVQ1 technique the network obtained an index satisfactory of classification of 80% and 100% respectively. With the 5x5 configuration to increase the index of classification.
publishDate 2002
dc.date.none.fl_str_mv 2002
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/183231
url http://sedici.unlp.edu.ar/handle/10915/183231
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1660-1079
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
255-261
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616360101937152
score 13.070432