Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X

Autores
Guevara Cruz, Ronny Stalin; Delrieux, Claudio Augusto
Año de publicación
2023
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Las redes neuronales convolucionales (CNN) tienen gran potencial en resolver problemas de clasificación con imágenes. La presente investigación tiene como objetivo presentar modelos reducidos que permita identificar casos de neumonía y COVID-19 en imágenes de rayos X de tórax(anterior-posterior), ofreciendo una amplia perspectiva del interés de herramientas que brindan soporte y asistencia médica. La precisión en la clasificación fue mejorada y el sobre ajuste fue evitado agregando técnicas de regularización y optimizando los hiperparámetros. La capacidad y tamaño de los modelos fueron reducidos hasta obtener una opción perfecta para ser desplegados localmente en dispositivos con capacidades limitadas. Los algoritmos propuestos se desarrollaron en Google Colab utilizando el lenguaje de programación Python, aplicando redes neuronales densas y convolucionales a diferentes capas hasta obtener un índice de error bajo, para posterior diagnosticar si el paciente presenta COVID-19. Para ello, se utiliza un conjunto de 603 imágenes de alta resolución de bases de datos públicos (ver en https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5 y https://github.com/ieee8023/covid-chestxray-dataset), divididas en 403 imágenes para entrenamiento, 200 imágenes para prueba y 12 imágenes para validación. La herramienta diseñada con una red neuronal convolucional de 13 capas propone la integración de aprendizaje de maquina (Machine Learning) como soporte en el proceso de diagnóstico médico, con una precisión del 94.73% puede convertirse en una herramienta que brinda mayor velocidad a la hora de dar un diagnóstico.
Convolutional neural networks (CNNs) have great potential in solving classification problems with images. The present research aims to present reduced models that allow identifying cases of pneumonia and COVID-19 in chest X-ray images (anterior-posterior), offering a broad perspective of the interest of tools that provide medical support and assistance. The capacity and size of the models were reduced until obtaining a perfect option to be deployed locally in devices with limited resources. The proposed algorithms were developed in Google Colab using the Python programming language, applying dense and convolutional neural networks to different layers until obtaining a low error rate, to later diagnose if the patient has COVID-19. To do this, a set of 603 high-resolution images from public databases (see in https://www.cell.com/cell/fulltext/S0092- 8674(18)30154-5 and https://github.com/ieee8023/covid-chestxray-dataset) is used, divided into 403 images for training, 200 images for testing and 12 images for validation. The tool designed with a convolutional neural network of 13 layers proposes the integration of machine learning (Machine Learning) as a support in the medical diagnosis process, with an accuracy of 94.73% can become a tool that provides greater speed when giving a diagnosis.
Fil: Guevara Cruz, Ronny Stalin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Materia
COVID-19
MACHINE LEARNING
ARTIFICIAL INTELLIGENCE
CONVOLUTIONAL NEURAL NETWORKS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/213918

id CONICETDig_d0e622a2c0be62a30b89eb59152c3265
oai_identifier_str oai:ri.conicet.gov.ar:11336/213918
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos XApplication of dense and convolutional neural networks for COVID_19 detection in Xray imagesGuevara Cruz, Ronny StalinDelrieux, Claudio AugustoCOVID-19MACHINE LEARNINGARTIFICIAL INTELLIGENCECONVOLUTIONAL NEURAL NETWORKShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Las redes neuronales convolucionales (CNN) tienen gran potencial en resolver problemas de clasificación con imágenes. La presente investigación tiene como objetivo presentar modelos reducidos que permita identificar casos de neumonía y COVID-19 en imágenes de rayos X de tórax(anterior-posterior), ofreciendo una amplia perspectiva del interés de herramientas que brindan soporte y asistencia médica. La precisión en la clasificación fue mejorada y el sobre ajuste fue evitado agregando técnicas de regularización y optimizando los hiperparámetros. La capacidad y tamaño de los modelos fueron reducidos hasta obtener una opción perfecta para ser desplegados localmente en dispositivos con capacidades limitadas. Los algoritmos propuestos se desarrollaron en Google Colab utilizando el lenguaje de programación Python, aplicando redes neuronales densas y convolucionales a diferentes capas hasta obtener un índice de error bajo, para posterior diagnosticar si el paciente presenta COVID-19. Para ello, se utiliza un conjunto de 603 imágenes de alta resolución de bases de datos públicos (ver en https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5 y https://github.com/ieee8023/covid-chestxray-dataset), divididas en 403 imágenes para entrenamiento, 200 imágenes para prueba y 12 imágenes para validación. La herramienta diseñada con una red neuronal convolucional de 13 capas propone la integración de aprendizaje de maquina (Machine Learning) como soporte en el proceso de diagnóstico médico, con una precisión del 94.73% puede convertirse en una herramienta que brinda mayor velocidad a la hora de dar un diagnóstico.Convolutional neural networks (CNNs) have great potential in solving classification problems with images. The present research aims to present reduced models that allow identifying cases of pneumonia and COVID-19 in chest X-ray images (anterior-posterior), offering a broad perspective of the interest of tools that provide medical support and assistance. The capacity and size of the models were reduced until obtaining a perfect option to be deployed locally in devices with limited resources. The proposed algorithms were developed in Google Colab using the Python programming language, applying dense and convolutional neural networks to different layers until obtaining a low error rate, to later diagnose if the patient has COVID-19. To do this, a set of 603 high-resolution images from public databases (see in https://www.cell.com/cell/fulltext/S0092- 8674(18)30154-5 and https://github.com/ieee8023/covid-chestxray-dataset) is used, divided into 403 images for training, 200 images for testing and 12 images for validation. The tool designed with a convolutional neural network of 13 layers proposes the integration of machine learning (Machine Learning) as a support in the medical diagnosis process, with an accuracy of 94.73% can become a tool that provides greater speed when giving a diagnosis.Fil: Guevara Cruz, Ronny Stalin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaInstituto Tecnológico Universitario Rumiñahui2023-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213918Guevara Cruz, Ronny Stalin; Delrieux, Claudio Augusto; Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X; Instituto Tecnológico Universitario Rumiñahui; Revista Conectividad; 4; 2; 7-2023; 19-322806-5875CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/https://revista.ister.edu.ec/ojs/index.php/ISTER/article/view/78info:eu-repo/semantics/altIdentifier/doi/10.37431/conectividad.v4i2.78info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:34:38Zoai:ri.conicet.gov.ar:11336/213918instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:34:38.506CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X
Application of dense and convolutional neural networks for COVID_19 detection in Xray images
title Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X
spellingShingle Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X
Guevara Cruz, Ronny Stalin
COVID-19
MACHINE LEARNING
ARTIFICIAL INTELLIGENCE
CONVOLUTIONAL NEURAL NETWORKS
title_short Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X
title_full Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X
title_fullStr Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X
title_full_unstemmed Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X
title_sort Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X
dc.creator.none.fl_str_mv Guevara Cruz, Ronny Stalin
Delrieux, Claudio Augusto
author Guevara Cruz, Ronny Stalin
author_facet Guevara Cruz, Ronny Stalin
Delrieux, Claudio Augusto
author_role author
author2 Delrieux, Claudio Augusto
author2_role author
dc.subject.none.fl_str_mv COVID-19
MACHINE LEARNING
ARTIFICIAL INTELLIGENCE
CONVOLUTIONAL NEURAL NETWORKS
topic COVID-19
MACHINE LEARNING
ARTIFICIAL INTELLIGENCE
CONVOLUTIONAL NEURAL NETWORKS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Las redes neuronales convolucionales (CNN) tienen gran potencial en resolver problemas de clasificación con imágenes. La presente investigación tiene como objetivo presentar modelos reducidos que permita identificar casos de neumonía y COVID-19 en imágenes de rayos X de tórax(anterior-posterior), ofreciendo una amplia perspectiva del interés de herramientas que brindan soporte y asistencia médica. La precisión en la clasificación fue mejorada y el sobre ajuste fue evitado agregando técnicas de regularización y optimizando los hiperparámetros. La capacidad y tamaño de los modelos fueron reducidos hasta obtener una opción perfecta para ser desplegados localmente en dispositivos con capacidades limitadas. Los algoritmos propuestos se desarrollaron en Google Colab utilizando el lenguaje de programación Python, aplicando redes neuronales densas y convolucionales a diferentes capas hasta obtener un índice de error bajo, para posterior diagnosticar si el paciente presenta COVID-19. Para ello, se utiliza un conjunto de 603 imágenes de alta resolución de bases de datos públicos (ver en https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5 y https://github.com/ieee8023/covid-chestxray-dataset), divididas en 403 imágenes para entrenamiento, 200 imágenes para prueba y 12 imágenes para validación. La herramienta diseñada con una red neuronal convolucional de 13 capas propone la integración de aprendizaje de maquina (Machine Learning) como soporte en el proceso de diagnóstico médico, con una precisión del 94.73% puede convertirse en una herramienta que brinda mayor velocidad a la hora de dar un diagnóstico.
Convolutional neural networks (CNNs) have great potential in solving classification problems with images. The present research aims to present reduced models that allow identifying cases of pneumonia and COVID-19 in chest X-ray images (anterior-posterior), offering a broad perspective of the interest of tools that provide medical support and assistance. The capacity and size of the models were reduced until obtaining a perfect option to be deployed locally in devices with limited resources. The proposed algorithms were developed in Google Colab using the Python programming language, applying dense and convolutional neural networks to different layers until obtaining a low error rate, to later diagnose if the patient has COVID-19. To do this, a set of 603 high-resolution images from public databases (see in https://www.cell.com/cell/fulltext/S0092- 8674(18)30154-5 and https://github.com/ieee8023/covid-chestxray-dataset) is used, divided into 403 images for training, 200 images for testing and 12 images for validation. The tool designed with a convolutional neural network of 13 layers proposes the integration of machine learning (Machine Learning) as a support in the medical diagnosis process, with an accuracy of 94.73% can become a tool that provides greater speed when giving a diagnosis.
Fil: Guevara Cruz, Ronny Stalin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Delrieux, Claudio Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
description Las redes neuronales convolucionales (CNN) tienen gran potencial en resolver problemas de clasificación con imágenes. La presente investigación tiene como objetivo presentar modelos reducidos que permita identificar casos de neumonía y COVID-19 en imágenes de rayos X de tórax(anterior-posterior), ofreciendo una amplia perspectiva del interés de herramientas que brindan soporte y asistencia médica. La precisión en la clasificación fue mejorada y el sobre ajuste fue evitado agregando técnicas de regularización y optimizando los hiperparámetros. La capacidad y tamaño de los modelos fueron reducidos hasta obtener una opción perfecta para ser desplegados localmente en dispositivos con capacidades limitadas. Los algoritmos propuestos se desarrollaron en Google Colab utilizando el lenguaje de programación Python, aplicando redes neuronales densas y convolucionales a diferentes capas hasta obtener un índice de error bajo, para posterior diagnosticar si el paciente presenta COVID-19. Para ello, se utiliza un conjunto de 603 imágenes de alta resolución de bases de datos públicos (ver en https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5 y https://github.com/ieee8023/covid-chestxray-dataset), divididas en 403 imágenes para entrenamiento, 200 imágenes para prueba y 12 imágenes para validación. La herramienta diseñada con una red neuronal convolucional de 13 capas propone la integración de aprendizaje de maquina (Machine Learning) como soporte en el proceso de diagnóstico médico, con una precisión del 94.73% puede convertirse en una herramienta que brinda mayor velocidad a la hora de dar un diagnóstico.
publishDate 2023
dc.date.none.fl_str_mv 2023-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/213918
Guevara Cruz, Ronny Stalin; Delrieux, Claudio Augusto; Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X; Instituto Tecnológico Universitario Rumiñahui; Revista Conectividad; 4; 2; 7-2023; 19-32
2806-5875
CONICET Digital
CONICET
url http://hdl.handle.net/11336/213918
identifier_str_mv Guevara Cruz, Ronny Stalin; Delrieux, Claudio Augusto; Aplicación de redes neuronales densas y convolucionales para detección de COVID_19 en imágenes de rayos X; Instituto Tecnológico Universitario Rumiñahui; Revista Conectividad; 4; 2; 7-2023; 19-32
2806-5875
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://revista.ister.edu.ec/ojs/index.php/ISTER/article/view/78
info:eu-repo/semantics/altIdentifier/doi/10.37431/conectividad.v4i2.78
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Instituto Tecnológico Universitario Rumiñahui
publisher.none.fl_str_mv Instituto Tecnológico Universitario Rumiñahui
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613073252384768
score 13.070432