DE with Random Vector based Mutatiton for High Dimensional Problems
- Autores
- Hernández, Sebastián; Mezura Montes, Efrén; Leguizamón, Guillermo
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Metaheuristic techniques are the current standard for solving optimization problems. Differential Evolution (DE) is one of the most used because all operations are on real floating point numbers and does not require extra coding. However, the performance shown by DE could decay when applied in problems of high dimensionality. In this paper we present RLSDE, a modified version of DE, based on a random vector as a scaling factor for the differential mutation and the application of a local search operator. These modifications constitute an algorithm capable of solving 100D problems using few computational resources. RLSDE is compared against the results obtained with the classic version of DE and ELSDE (Enchanced Local Search Differential Evolution), showing the performance of the proposal.
XX Workshop Agentes y Sistemas Inteligentes.
Red de Universidades con Carreras en Informática - Materia
-
Ciencias Informáticas
Differential evolution
High-dimensional optimization problem
Local search - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/90893
Ver los metadatos del registro completo
id |
SEDICI_53716727b176cede5be45b1baadff15c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/90893 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
DE with Random Vector based Mutatiton for High Dimensional ProblemsHernández, SebastiánMezura Montes, EfrénLeguizamón, GuillermoCiencias InformáticasDifferential evolutionHigh-dimensional optimization problemLocal searchMetaheuristic techniques are the current standard for solving optimization problems. Differential Evolution (DE) is one of the most used because all operations are on real floating point numbers and does not require extra coding. However, the performance shown by DE could decay when applied in problems of high dimensionality. In this paper we present RLSDE, a modified version of DE, based on a random vector as a scaling factor for the differential mutation and the application of a local search operator. These modifications constitute an algorithm capable of solving 100D problems using few computational resources. RLSDE is compared against the results obtained with the classic version of DE and ELSDE (Enchanced Local Search Differential Evolution), showing the performance of the proposal.XX Workshop Agentes y Sistemas Inteligentes.Red de Universidades con Carreras en Informática2019-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf52-63http://sedici.unlp.edu.ar/handle/10915/90893enginfo:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1info:eu-repo/semantics/reference/hdl/10915/90359info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:03Zoai:sedici.unlp.edu.ar:10915/90893Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:03.318SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
DE with Random Vector based Mutatiton for High Dimensional Problems |
title |
DE with Random Vector based Mutatiton for High Dimensional Problems |
spellingShingle |
DE with Random Vector based Mutatiton for High Dimensional Problems Hernández, Sebastián Ciencias Informáticas Differential evolution High-dimensional optimization problem Local search |
title_short |
DE with Random Vector based Mutatiton for High Dimensional Problems |
title_full |
DE with Random Vector based Mutatiton for High Dimensional Problems |
title_fullStr |
DE with Random Vector based Mutatiton for High Dimensional Problems |
title_full_unstemmed |
DE with Random Vector based Mutatiton for High Dimensional Problems |
title_sort |
DE with Random Vector based Mutatiton for High Dimensional Problems |
dc.creator.none.fl_str_mv |
Hernández, Sebastián Mezura Montes, Efrén Leguizamón, Guillermo |
author |
Hernández, Sebastián |
author_facet |
Hernández, Sebastián Mezura Montes, Efrén Leguizamón, Guillermo |
author_role |
author |
author2 |
Mezura Montes, Efrén Leguizamón, Guillermo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Differential evolution High-dimensional optimization problem Local search |
topic |
Ciencias Informáticas Differential evolution High-dimensional optimization problem Local search |
dc.description.none.fl_txt_mv |
Metaheuristic techniques are the current standard for solving optimization problems. Differential Evolution (DE) is one of the most used because all operations are on real floating point numbers and does not require extra coding. However, the performance shown by DE could decay when applied in problems of high dimensionality. In this paper we present RLSDE, a modified version of DE, based on a random vector as a scaling factor for the differential mutation and the application of a local search operator. These modifications constitute an algorithm capable of solving 100D problems using few computational resources. RLSDE is compared against the results obtained with the classic version of DE and ELSDE (Enchanced Local Search Differential Evolution), showing the performance of the proposal. XX Workshop Agentes y Sistemas Inteligentes. Red de Universidades con Carreras en Informática |
description |
Metaheuristic techniques are the current standard for solving optimization problems. Differential Evolution (DE) is one of the most used because all operations are on real floating point numbers and does not require extra coding. However, the performance shown by DE could decay when applied in problems of high dimensionality. In this paper we present RLSDE, a modified version of DE, based on a random vector as a scaling factor for the differential mutation and the application of a local search operator. These modifications constitute an algorithm capable of solving 100D problems using few computational resources. RLSDE is compared against the results obtained with the classic version of DE and ELSDE (Enchanced Local Search Differential Evolution), showing the performance of the proposal. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/90893 |
url |
http://sedici.unlp.edu.ar/handle/10915/90893 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-987-688-377-1 info:eu-repo/semantics/reference/hdl/10915/90359 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 52-63 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616064029163520 |
score |
13.070432 |