D-rules: learning & planning

Autores
Roncagliolo, Silvana
Año de publicación
2005
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
One current research goal of Artificial Intelligence and Machine Learning is to improve the problem-solving performance of systems with their own experience or from external teaching. The work presented in this paper concentrates on the learning of decomposition rules, also called d-rules, i.e., given some examples learn rules that guide the planning process, in new problems, by determining what operators are to be included in the solution plan. Also a planning algorithm is presented that uses the learned d-rules in order to obtain the desired plan. The learning algorithm includes a value function approximation, which gives each learned rule an associated function. If the planner finds more than one applicable d-rule, it discriminates among them using this feature. Decomposition rules have been learned in the blocks world domain, and those d-rules have been used by the planner to solve new problems.
VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
machine learning
planning
decomposition rules
value function approximation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/22977

id SEDICI_536a2fe9f08fa750ee2bb8abe23e7c10
oai_identifier_str oai:sedici.unlp.edu.ar:10915/22977
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling D-rules: learning & planningRoncagliolo, SilvanaCiencias Informáticasmachine learningplanningdecomposition rulesvalue function approximationOne current research goal of Artificial Intelligence and Machine Learning is to improve the problem-solving performance of systems with their own experience or from external teaching. The work presented in this paper concentrates on the learning of decomposition rules, also called d-rules, i.e., given some examples learn rules that guide the planning process, in new problems, by determining what operators are to be included in the solution plan. Also a planning algorithm is presented that uses the learned d-rules in order to obtain the desired plan. The learning algorithm includes a value function approximation, which gives each learned rule an associated function. If the planner finds more than one applicable d-rule, it discriminates among them using this feature. Decomposition rules have been learned in the blocks world domain, and those d-rules have been used by the planner to solve new problems.VI Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI)2005-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22977enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:16Zoai:sedici.unlp.edu.ar:10915/22977Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:16.919SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv D-rules: learning & planning
title D-rules: learning & planning
spellingShingle D-rules: learning & planning
Roncagliolo, Silvana
Ciencias Informáticas
machine learning
planning
decomposition rules
value function approximation
title_short D-rules: learning & planning
title_full D-rules: learning & planning
title_fullStr D-rules: learning & planning
title_full_unstemmed D-rules: learning & planning
title_sort D-rules: learning & planning
dc.creator.none.fl_str_mv Roncagliolo, Silvana
author Roncagliolo, Silvana
author_facet Roncagliolo, Silvana
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
machine learning
planning
decomposition rules
value function approximation
topic Ciencias Informáticas
machine learning
planning
decomposition rules
value function approximation
dc.description.none.fl_txt_mv One current research goal of Artificial Intelligence and Machine Learning is to improve the problem-solving performance of systems with their own experience or from external teaching. The work presented in this paper concentrates on the learning of decomposition rules, also called d-rules, i.e., given some examples learn rules that guide the planning process, in new problems, by determining what operators are to be included in the solution plan. Also a planning algorithm is presented that uses the learned d-rules in order to obtain the desired plan. The learning algorithm includes a value function approximation, which gives each learned rule an associated function. If the planner finds more than one applicable d-rule, it discriminates among them using this feature. Decomposition rules have been learned in the blocks world domain, and those d-rules have been used by the planner to solve new problems.
VI Workshop de Agentes y Sistemas Inteligentes (WASI)
Red de Universidades con Carreras en Informática (RedUNCI)
description One current research goal of Artificial Intelligence and Machine Learning is to improve the problem-solving performance of systems with their own experience or from external teaching. The work presented in this paper concentrates on the learning of decomposition rules, also called d-rules, i.e., given some examples learn rules that guide the planning process, in new problems, by determining what operators are to be included in the solution plan. Also a planning algorithm is presented that uses the learned d-rules in order to obtain the desired plan. The learning algorithm includes a value function approximation, which gives each learned rule an associated function. If the planner finds more than one applicable d-rule, it discriminates among them using this feature. Decomposition rules have been learned in the blocks world domain, and those d-rules have been used by the planner to solve new problems.
publishDate 2005
dc.date.none.fl_str_mv 2005-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/22977
url http://sedici.unlp.edu.ar/handle/10915/22977
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615811423010816
score 13.070432