Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small Data
- Autores
- Gutiérrez, Emiliano; López del Río, Lorena Caridad; Caridad Ocerín, Jose María
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This study explores residential property valuation in Seville, Spain, using interpretable machine learning techniques on a small dataset of 1701 sales ads of apartments collected online. Unlike conventional approaches that rely on large datasets, our research addresses the unique challenges of small data samples while maintaining model interpretability. We compare traditional hedonic linear regression with Random Forest algorithms. The results provide actionable insights for real estate stakeholders in medium-sized urban markets, bridging the gap between econometric tradition and machine learning innovation.
Instituto de Investigación en Informática - Materia
-
Ciencias Informáticas
interpretable machine learning
hedonic pricing
random forest - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-nd/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/182614
Ver los metadatos del registro completo
id |
SEDICI_535f5f8bfea591eb223e532e378d2b0d |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/182614 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small DataGutiérrez, EmilianoLópez del Río, Lorena CaridadCaridad Ocerín, Jose MaríaCiencias Informáticasinterpretable machine learninghedonic pricingrandom forestThis study explores residential property valuation in Seville, Spain, using interpretable machine learning techniques on a small dataset of 1701 sales ads of apartments collected online. Unlike conventional approaches that rely on large datasets, our research addresses the unique challenges of small data samples while maintaining model interpretability. We compare traditional hedonic linear regression with Random Forest algorithms. The results provide actionable insights for real estate stakeholders in medium-sized urban markets, bridging the gap between econometric tradition and machine learning innovation.Instituto de Investigación en Informática2025-06info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf101-105http://sedici.unlp.edu.ar/handle/10915/182614enginfo:eu-repo/semantics/altIdentifier/isbn/978-950-34-2583-1info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:21:39Zoai:sedici.unlp.edu.ar:10915/182614Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:21:40.088SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small Data |
title |
Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small Data |
spellingShingle |
Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small Data Gutiérrez, Emiliano Ciencias Informáticas interpretable machine learning hedonic pricing random forest |
title_short |
Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small Data |
title_full |
Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small Data |
title_fullStr |
Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small Data |
title_full_unstemmed |
Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small Data |
title_sort |
Interpretable Machine Learning for Real Estate Valuation: A Case Study with Small Data |
dc.creator.none.fl_str_mv |
Gutiérrez, Emiliano López del Río, Lorena Caridad Caridad Ocerín, Jose María |
author |
Gutiérrez, Emiliano |
author_facet |
Gutiérrez, Emiliano López del Río, Lorena Caridad Caridad Ocerín, Jose María |
author_role |
author |
author2 |
López del Río, Lorena Caridad Caridad Ocerín, Jose María |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas interpretable machine learning hedonic pricing random forest |
topic |
Ciencias Informáticas interpretable machine learning hedonic pricing random forest |
dc.description.none.fl_txt_mv |
This study explores residential property valuation in Seville, Spain, using interpretable machine learning techniques on a small dataset of 1701 sales ads of apartments collected online. Unlike conventional approaches that rely on large datasets, our research addresses the unique challenges of small data samples while maintaining model interpretability. We compare traditional hedonic linear regression with Random Forest algorithms. The results provide actionable insights for real estate stakeholders in medium-sized urban markets, bridging the gap between econometric tradition and machine learning innovation. Instituto de Investigación en Informática |
description |
This study explores residential property valuation in Seville, Spain, using interpretable machine learning techniques on a small dataset of 1701 sales ads of apartments collected online. Unlike conventional approaches that rely on large datasets, our research addresses the unique challenges of small data samples while maintaining model interpretability. We compare traditional hedonic linear regression with Random Forest algorithms. The results provide actionable insights for real estate stakeholders in medium-sized urban markets, bridging the gap between econometric tradition and machine learning innovation. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/182614 |
url |
http://sedici.unlp.edu.ar/handle/10915/182614 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-34-2583-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.format.none.fl_str_mv |
application/pdf 101-105 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260721337892864 |
score |
13.13397 |