DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance suppor...

Autores
Barreto, Marcos Ennes; Navaux, Philippe O. A.; Riviere, Rolando M.
Año de publicación
1998
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
DECK (Distributed Executive Communication Kernel) is a communication layer that provides support for multithreading and fault tolerance support. The approach retained in DECK is close to other distributed communication kernels like PM2, Athapascan, Nexus, TPVM or Chant in its way to integrate communication and multithreading to efficiently overlap communication by computation and provide low latency remote thread creation mechanisms. However, DECK differs from these communication kernels from the services offered and its modular architecture. The main goal of DECK is to implement a new model for the design of distributed executive kernel to efficiently use the new underlying hardware architectures (SMP architectures and fast communication adapters like Myrinet or memory oriented adapter like SCI) and provide a portable layer that abstract the problems linked with the integration of communication and multithreading while offering support for heterogeneity. A great lack in the current implementation of communication libraries or distributed executive kernel is the support for basic services at the thread level and support for fault tolerance support. Indeed, communication library like PVM or MPI are often used as communication layer to ensure portability and take benefits of specific implementation to ensure a good efficiency on specific architectures however the support for fault tolerance support, multithreading, scalability and interoperability are usually not offered. In the case of DECK, we propose a model where a distributed application can dynamically instantiate clusters of processes among an heterogeneous network of computers or parallel machines and this using multiple communication protocols or communication interfaces to ensure good performances regarding the underlying hardware architecture. The programming model proposed offer both classic synchronous and asynchronous remote service calls for thread creation and message passing for synchronization and data exchange. These basic functionalities, that form the low level communication and execution layer of DECK, are enforced by a service layer that propose the basic fault tolerant services like naming and group services or data management services for the marshaling and un-marshalling of complex data structures. The layered and modular approach followed by DECK enable many other extensions while keeping a high degree of portability and efficiency.
Sistemas Distribuidos - Redes Concurrencia
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Informática
distributed systems
communication and executive kernels
multithreading
fault tolerance
Security kernels
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/24447

id SEDICI_5264fece7e156be8f3f3b60d3fe1c3f7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/24447
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance supportBarreto, Marcos EnnesNavaux, Philippe O. A.Riviere, Rolando M.Ciencias InformáticasInformáticadistributed systemscommunication and executive kernelsmultithreadingfault toleranceSecurity kernelsDECK (Distributed Executive Communication Kernel) is a communication layer that provides support for multithreading and fault tolerance support. The approach retained in DECK is close to other distributed communication kernels like PM2, Athapascan, Nexus, TPVM or Chant in its way to integrate communication and multithreading to efficiently overlap communication by computation and provide low latency remote thread creation mechanisms. However, DECK differs from these communication kernels from the services offered and its modular architecture. The main goal of DECK is to implement a new model for the design of distributed executive kernel to efficiently use the new underlying hardware architectures (SMP architectures and fast communication adapters like Myrinet or memory oriented adapter like SCI) and provide a portable layer that abstract the problems linked with the integration of communication and multithreading while offering support for heterogeneity. A great lack in the current implementation of communication libraries or distributed executive kernel is the support for basic services at the thread level and support for fault tolerance support. Indeed, communication library like PVM or MPI are often used as communication layer to ensure portability and take benefits of specific implementation to ensure a good efficiency on specific architectures however the support for fault tolerance support, multithreading, scalability and interoperability are usually not offered. In the case of DECK, we propose a model where a distributed application can dynamically instantiate clusters of processes among an heterogeneous network of computers or parallel machines and this using multiple communication protocols or communication interfaces to ensure good performances regarding the underlying hardware architecture. The programming model proposed offer both classic synchronous and asynchronous remote service calls for thread creation and message passing for synchronization and data exchange. These basic functionalities, that form the low level communication and execution layer of DECK, are enforced by a service layer that propose the basic fault tolerant services like naming and group services or data management services for the marshaling and un-marshalling of complex data structures. The layered and modular approach followed by DECK enable many other extensions while keeping a high degree of portability and efficiency.Sistemas Distribuidos - Redes ConcurrenciaRed de Universidades con Carreras en Informática (RedUNCI)1998-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/24447enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:55:50Zoai:sedici.unlp.edu.ar:10915/24447Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:55:51.151SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance support
title DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance support
spellingShingle DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance support
Barreto, Marcos Ennes
Ciencias Informáticas
Informática
distributed systems
communication and executive kernels
multithreading
fault tolerance
Security kernels
title_short DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance support
title_full DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance support
title_fullStr DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance support
title_full_unstemmed DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance support
title_sort DECK: A new model for a distributed executive kernel integrating communication and multithreading for support of distributed object oriented application with fault tolerance support
dc.creator.none.fl_str_mv Barreto, Marcos Ennes
Navaux, Philippe O. A.
Riviere, Rolando M.
author Barreto, Marcos Ennes
author_facet Barreto, Marcos Ennes
Navaux, Philippe O. A.
Riviere, Rolando M.
author_role author
author2 Navaux, Philippe O. A.
Riviere, Rolando M.
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Informática
distributed systems
communication and executive kernels
multithreading
fault tolerance
Security kernels
topic Ciencias Informáticas
Informática
distributed systems
communication and executive kernels
multithreading
fault tolerance
Security kernels
dc.description.none.fl_txt_mv DECK (Distributed Executive Communication Kernel) is a communication layer that provides support for multithreading and fault tolerance support. The approach retained in DECK is close to other distributed communication kernels like PM2, Athapascan, Nexus, TPVM or Chant in its way to integrate communication and multithreading to efficiently overlap communication by computation and provide low latency remote thread creation mechanisms. However, DECK differs from these communication kernels from the services offered and its modular architecture. The main goal of DECK is to implement a new model for the design of distributed executive kernel to efficiently use the new underlying hardware architectures (SMP architectures and fast communication adapters like Myrinet or memory oriented adapter like SCI) and provide a portable layer that abstract the problems linked with the integration of communication and multithreading while offering support for heterogeneity. A great lack in the current implementation of communication libraries or distributed executive kernel is the support for basic services at the thread level and support for fault tolerance support. Indeed, communication library like PVM or MPI are often used as communication layer to ensure portability and take benefits of specific implementation to ensure a good efficiency on specific architectures however the support for fault tolerance support, multithreading, scalability and interoperability are usually not offered. In the case of DECK, we propose a model where a distributed application can dynamically instantiate clusters of processes among an heterogeneous network of computers or parallel machines and this using multiple communication protocols or communication interfaces to ensure good performances regarding the underlying hardware architecture. The programming model proposed offer both classic synchronous and asynchronous remote service calls for thread creation and message passing for synchronization and data exchange. These basic functionalities, that form the low level communication and execution layer of DECK, are enforced by a service layer that propose the basic fault tolerant services like naming and group services or data management services for the marshaling and un-marshalling of complex data structures. The layered and modular approach followed by DECK enable many other extensions while keeping a high degree of portability and efficiency.
Sistemas Distribuidos - Redes Concurrencia
Red de Universidades con Carreras en Informática (RedUNCI)
description DECK (Distributed Executive Communication Kernel) is a communication layer that provides support for multithreading and fault tolerance support. The approach retained in DECK is close to other distributed communication kernels like PM2, Athapascan, Nexus, TPVM or Chant in its way to integrate communication and multithreading to efficiently overlap communication by computation and provide low latency remote thread creation mechanisms. However, DECK differs from these communication kernels from the services offered and its modular architecture. The main goal of DECK is to implement a new model for the design of distributed executive kernel to efficiently use the new underlying hardware architectures (SMP architectures and fast communication adapters like Myrinet or memory oriented adapter like SCI) and provide a portable layer that abstract the problems linked with the integration of communication and multithreading while offering support for heterogeneity. A great lack in the current implementation of communication libraries or distributed executive kernel is the support for basic services at the thread level and support for fault tolerance support. Indeed, communication library like PVM or MPI are often used as communication layer to ensure portability and take benefits of specific implementation to ensure a good efficiency on specific architectures however the support for fault tolerance support, multithreading, scalability and interoperability are usually not offered. In the case of DECK, we propose a model where a distributed application can dynamically instantiate clusters of processes among an heterogeneous network of computers or parallel machines and this using multiple communication protocols or communication interfaces to ensure good performances regarding the underlying hardware architecture. The programming model proposed offer both classic synchronous and asynchronous remote service calls for thread creation and message passing for synchronization and data exchange. These basic functionalities, that form the low level communication and execution layer of DECK, are enforced by a service layer that propose the basic fault tolerant services like naming and group services or data management services for the marshaling and un-marshalling of complex data structures. The layered and modular approach followed by DECK enable many other extensions while keeping a high degree of portability and efficiency.
publishDate 1998
dc.date.none.fl_str_mv 1998-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/24447
url http://sedici.unlp.edu.ar/handle/10915/24447
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615818452664320
score 13.070432