Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity

Autores
Plastino, Ángel Luis; Rocca, Mario Carlos
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field φ μν =γ μνφ , where γ μν is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)].
Facultad de Ciencias Exactas
Materia
Física
Quantum Field Theory
Einstein Gravity
Non-Renormalizable Theories
Unitarity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/119283

id SEDICI_51a0b9fbe4ea34f775219fd1c5f5ab8b
oai_identifier_str oai:sedici.unlp.edu.ar:10915/119283
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s GravityPlastino, Ángel LuisRocca, Mario CarlosFísicaQuantum Field TheoryEinstein GravityNon-Renormalizable TheoriesUnitarityWe revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field φ μν =γ μνφ , where γ μν is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)].Facultad de Ciencias Exactas2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf298-311http://sedici.unlp.edu.ar/handle/10915/119283enginfo:eu-repo/semantics/altIdentifier/issn/2380-4335info:eu-repo/semantics/altIdentifier/issn/2380-4327info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.62023info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:20:00Zoai:sedici.unlp.edu.ar:10915/119283Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:20:00.321SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
spellingShingle Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
Plastino, Ángel Luis
Física
Quantum Field Theory
Einstein Gravity
Non-Renormalizable Theories
Unitarity
title_short Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title_full Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title_fullStr Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title_full_unstemmed Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title_sort Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
dc.creator.none.fl_str_mv Plastino, Ángel Luis
Rocca, Mario Carlos
author Plastino, Ángel Luis
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_role author
author2 Rocca, Mario Carlos
author2_role author
dc.subject.none.fl_str_mv Física
Quantum Field Theory
Einstein Gravity
Non-Renormalizable Theories
Unitarity
topic Física
Quantum Field Theory
Einstein Gravity
Non-Renormalizable Theories
Unitarity
dc.description.none.fl_txt_mv We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field φ μν =γ μνφ , where γ μν is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)].
Facultad de Ciencias Exactas
description We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field φ μν =γ μνφ , where γ μν is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)].
publishDate 2020
dc.date.none.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/119283
url http://sedici.unlp.edu.ar/handle/10915/119283
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/2380-4335
info:eu-repo/semantics/altIdentifier/issn/2380-4327
info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.62023
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
298-311
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064257278410752
score 13.22299