Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
- Autores
- Plastino, Ángel Luis; Rocca, Mario Carlos
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field φ μν =γ μνφ , where γ μν is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)].
Facultad de Ciencias Exactas - Materia
-
Física
Quantum Field Theory
Einstein Gravity
Non-Renormalizable Theories
Unitarity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/119283
Ver los metadatos del registro completo
id |
SEDICI_51a0b9fbe4ea34f775219fd1c5f5ab8b |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/119283 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s GravityPlastino, Ángel LuisRocca, Mario CarlosFísicaQuantum Field TheoryEinstein GravityNon-Renormalizable TheoriesUnitarityWe revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field φ μν =γ μνφ , where γ μν is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)].Facultad de Ciencias Exactas2020info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf298-311http://sedici.unlp.edu.ar/handle/10915/119283enginfo:eu-repo/semantics/altIdentifier/issn/2380-4335info:eu-repo/semantics/altIdentifier/issn/2380-4327info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.62023info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:20:00Zoai:sedici.unlp.edu.ar:10915/119283Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:20:00.321SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity |
title |
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity |
spellingShingle |
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity Plastino, Ángel Luis Física Quantum Field Theory Einstein Gravity Non-Renormalizable Theories Unitarity |
title_short |
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity |
title_full |
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity |
title_fullStr |
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity |
title_full_unstemmed |
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity |
title_sort |
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity |
dc.creator.none.fl_str_mv |
Plastino, Ángel Luis Rocca, Mario Carlos |
author |
Plastino, Ángel Luis |
author_facet |
Plastino, Ángel Luis Rocca, Mario Carlos |
author_role |
author |
author2 |
Rocca, Mario Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Quantum Field Theory Einstein Gravity Non-Renormalizable Theories Unitarity |
topic |
Física Quantum Field Theory Einstein Gravity Non-Renormalizable Theories Unitarity |
dc.description.none.fl_txt_mv |
We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field φ μν =γ μνφ , where γ μν is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)]. Facultad de Ciencias Exactas |
description |
We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field φ μν =γ μνφ , where γ μν is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)]. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/119283 |
url |
http://sedici.unlp.edu.ar/handle/10915/119283 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/2380-4335 info:eu-repo/semantics/altIdentifier/issn/2380-4327 info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.62023 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 298-311 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064257278410752 |
score |
13.22299 |