Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity
- Autores
- Plastino, Ángel Luis; Rocca, Mario Carlos
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field µν µν φ γφ = , where µν γ is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in.
Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. École Polytechnique Fédérale de Lausanne; Suiza
Fil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina - Materia
-
Quantum Field Theory
Einstein gravity
Non-renormalizable theories
Unitarity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146087
Ver los metadatos del registro completo
id |
CONICETDig_6303b20de2dbc6ca5e0e24853804c9ea |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146087 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravityPlastino, Ángel LuisRocca, Mario CarlosQuantum Field TheoryEinstein gravityNon-renormalizable theoriesUnitarityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field µν µν φ γφ = , where µν γ is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in.Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. École Polytechnique Fédérale de Lausanne; SuizaFil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; ArgentinaScientific Research Publishing2020-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146087Plastino, Ángel Luis; Rocca, Mario Carlos; Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity; Scientific Research Publishing; Journal of High Energy Physics, Gravitation and Cosmology; 06; 02; 4-2020; 298-3112380-43352380-4327CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=99902info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.62023info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:56Zoai:ri.conicet.gov.ar:11336/146087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:56.789CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity |
title |
Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity |
spellingShingle |
Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity Plastino, Ángel Luis Quantum Field Theory Einstein gravity Non-renormalizable theories Unitarity |
title_short |
Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity |
title_full |
Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity |
title_fullStr |
Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity |
title_full_unstemmed |
Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity |
title_sort |
Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity |
dc.creator.none.fl_str_mv |
Plastino, Ángel Luis Rocca, Mario Carlos |
author |
Plastino, Ángel Luis |
author_facet |
Plastino, Ángel Luis Rocca, Mario Carlos |
author_role |
author |
author2 |
Rocca, Mario Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Quantum Field Theory Einstein gravity Non-renormalizable theories Unitarity |
topic |
Quantum Field Theory Einstein gravity Non-renormalizable theories Unitarity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field µν µν φ γφ = , where µν γ is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in. Fil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. École Polytechnique Fédérale de Lausanne; Suiza Fil: Rocca, Mario Carlos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Matemáticas; Argentina |
description |
We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field µν µν φ γφ = , where µν γ is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146087 Plastino, Ángel Luis; Rocca, Mario Carlos; Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity; Scientific Research Publishing; Journal of High Energy Physics, Gravitation and Cosmology; 06; 02; 4-2020; 298-311 2380-4335 2380-4327 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146087 |
identifier_str_mv |
Plastino, Ángel Luis; Rocca, Mario Carlos; Approximate reformulation a recent non-renormalizable QFT's methodology and Einstein's gravity; Scientific Research Publishing; Journal of High Energy Physics, Gravitation and Cosmology; 06; 02; 4-2020; 298-311 2380-4335 2380-4327 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.scirp.org/journal/paperinformation.aspx?paperid=99902 info:eu-repo/semantics/altIdentifier/doi/10.4236/jhepgc.2020.62023 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research Publishing |
publisher.none.fl_str_mv |
Scientific Research Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082592140427264 |
score |
13.22299 |