Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
- Autores
- Zunino, Luciano José; Ribeiro, Haroldo V.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures.
Facultad de Ingeniería
Centro de Investigaciones Ópticas - Materia
-
Ingeniería
Texture images
Roughness
Entropy
Complexity
Ordinal patterns probabilities
Multiscale analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/130624
Ver los metadatos del registro completo
id |
SEDICI_517202e6fe08a626aae94f925157e776 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/130624 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality planeZunino, Luciano JoséRibeiro, Haroldo V.IngenieríaTexture imagesRoughnessEntropyComplexityOrdinal patterns probabilitiesMultiscale analysisThe aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures.Facultad de IngenieríaCentro de Investigaciones Ópticas2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf679-688http://sedici.unlp.edu.ar/handle/10915/130624enginfo:eu-repo/semantics/altIdentifier/issn/0960-0779info:eu-repo/semantics/altIdentifier/arxiv/1609.01625info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2016.09.005info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:13:58Zoai:sedici.unlp.edu.ar:10915/130624Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:13:58.287SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane |
title |
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane |
spellingShingle |
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane Zunino, Luciano José Ingeniería Texture images Roughness Entropy Complexity Ordinal patterns probabilities Multiscale analysis |
title_short |
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane |
title_full |
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane |
title_fullStr |
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane |
title_full_unstemmed |
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane |
title_sort |
Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane |
dc.creator.none.fl_str_mv |
Zunino, Luciano José Ribeiro, Haroldo V. |
author |
Zunino, Luciano José |
author_facet |
Zunino, Luciano José Ribeiro, Haroldo V. |
author_role |
author |
author2 |
Ribeiro, Haroldo V. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ingeniería Texture images Roughness Entropy Complexity Ordinal patterns probabilities Multiscale analysis |
topic |
Ingeniería Texture images Roughness Entropy Complexity Ordinal patterns probabilities Multiscale analysis |
dc.description.none.fl_txt_mv |
The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures. Facultad de Ingeniería Centro de Investigaciones Ópticas |
description |
The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/130624 |
url |
http://sedici.unlp.edu.ar/handle/10915/130624 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0960-0779 info:eu-repo/semantics/altIdentifier/arxiv/1609.01625 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2016.09.005 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 679-688 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532770725330944 |
score |
13.000565 |