Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane

Autores
Zunino, Luciano José; Ribeiro, Haroldo V.
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures.
Facultad de Ingeniería
Centro de Investigaciones Ópticas
Materia
Ingeniería
Texture images
Roughness
Entropy
Complexity
Ordinal patterns probabilities
Multiscale analysis
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/130624

id SEDICI_517202e6fe08a626aae94f925157e776
oai_identifier_str oai:sedici.unlp.edu.ar:10915/130624
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Discriminating image textures with the multiscale two-dimensional complexity-entropy causality planeZunino, Luciano JoséRibeiro, Haroldo V.IngenieríaTexture imagesRoughnessEntropyComplexityOrdinal patterns probabilitiesMultiscale analysisThe aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures.Facultad de IngenieríaCentro de Investigaciones Ópticas2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf679-688http://sedici.unlp.edu.ar/handle/10915/130624enginfo:eu-repo/semantics/altIdentifier/issn/0960-0779info:eu-repo/semantics/altIdentifier/arxiv/1609.01625info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2016.09.005info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T10:13:58Zoai:sedici.unlp.edu.ar:10915/130624Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 10:13:58.287SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
title Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
spellingShingle Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
Zunino, Luciano José
Ingeniería
Texture images
Roughness
Entropy
Complexity
Ordinal patterns probabilities
Multiscale analysis
title_short Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
title_full Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
title_fullStr Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
title_full_unstemmed Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
title_sort Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane
dc.creator.none.fl_str_mv Zunino, Luciano José
Ribeiro, Haroldo V.
author Zunino, Luciano José
author_facet Zunino, Luciano José
Ribeiro, Haroldo V.
author_role author
author2 Ribeiro, Haroldo V.
author2_role author
dc.subject.none.fl_str_mv Ingeniería
Texture images
Roughness
Entropy
Complexity
Ordinal patterns probabilities
Multiscale analysis
topic Ingeniería
Texture images
Roughness
Entropy
Complexity
Ordinal patterns probabilities
Multiscale analysis
dc.description.none.fl_txt_mv The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures.
Facultad de Ingeniería
Centro de Investigaciones Ópticas
description The aim of this paper is to further explore the usefulness of the two-dimensional complexity-entropy causality plane as a texture image descriptor. A multiscale generalization is introduced in order to distinguish between different roughness features of images at small and large spatial scales. Numerically generated two-dimensional structures are initially considered for illustrating basic concepts in a controlled framework. Then, more realistic situations are studied. Obtained results allow us to confirm that intrinsic spatial correlations of images are successfully unveiled by implementing this multiscale symbolic information-theory approach. Consequently, we conclude that the proposed representation space is a versatile and practical tool for identifying, characterizing and discriminating image textures.
publishDate 2016
dc.date.none.fl_str_mv 2016-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/130624
url http://sedici.unlp.edu.ar/handle/10915/130624
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0960-0779
info:eu-repo/semantics/altIdentifier/arxiv/1609.01625
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2016.09.005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
679-688
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1843532770725330944
score 13.000565