Reconocimiento de gestos dinámicos
- Autores
- Quiroga, Facundo
- Año de publicación
- 2013
- Idioma
- español castellano
- Tipo de recurso
- tesis de grado
- Estado
- versión aceptada
- Colaborador/a o director/a de tesis
- Lanzarini, Laura Cristina
Corbalán, Leonardo César - Descripción
- El objetivo de esta tesina es estudiar, desarrollar, analizar y comparar distintas técnicas de aprendizaje automático aplicables al reconocimiento automático de gestos dinámicos. Para ello, se definió un modelo de gestos a reconocer, se generó una base de datos de prueba con gestos llamadas LNHG, y se estudiaron e implementaron clasificadores basados en máquinas de vectores de soporte (SVM), redes neuronales feedfoward (FF) y redes neuronales competitivas (CPN), utilizando representaciones locales y globales para caracterizar los gestos. Además, se propone un nuevo modelo de reconocimiento de gestos, el clasificador neuronal competitivo (CNC). Los gestos a reconocer son movimientos de la mano, con invariancia a la velocidad, la rotación, la escala y la traslación. La captura de la información referida a los gestos para generar la base de datos se realizó mediante el dispositivo Kinect y su SDK correspondiente, que reconoce las partes del cuerpo y determina sus posiciones en tiempo real. Los clasificadores se entrenaron con dichos datos para poder determinar si una secuencia de posiciones de la mano es un gesto. Se implementó una librería de clasificadores con los métodos mencionados anteriormente, junto con las transformaciones para llevar una secuencia de posiciones a una representación adecuada para el reconocimiento. Se realizaron experimentos con la base de datos LNHG, compuesta de gestos que representan dígitos y letras, y con un base de datos de otro autor con gestos típicos de interacción, obteniendo resultados satisfactorios.
Licenciado en Informática
Universidad Nacional de La Plata
Facultad de Informática - Materia
-
Ciencias Informáticas
aprendizaje automático
Object recognition
Neural nets
SVM
reconocimiento de gestos
Learning
redes neuronales - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/36025
Ver los metadatos del registro completo
id |
SEDICI_504e0b88c19a63a2c44c3b34d297816e |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/36025 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Reconocimiento de gestos dinámicosQuiroga, FacundoCiencias Informáticasaprendizaje automáticoObject recognitionNeural netsSVMreconocimiento de gestosLearningredes neuronalesEl objetivo de esta tesina es estudiar, desarrollar, analizar y comparar distintas técnicas de aprendizaje automático aplicables al reconocimiento automático de gestos dinámicos. Para ello, se definió un modelo de gestos a reconocer, se generó una base de datos de prueba con gestos llamadas LNHG, y se estudiaron e implementaron clasificadores basados en máquinas de vectores de soporte (SVM), redes neuronales feedfoward (FF) y redes neuronales competitivas (CPN), utilizando representaciones locales y globales para caracterizar los gestos. Además, se propone un nuevo modelo de reconocimiento de gestos, el clasificador neuronal competitivo (CNC). Los gestos a reconocer son movimientos de la mano, con invariancia a la velocidad, la rotación, la escala y la traslación. La captura de la información referida a los gestos para generar la base de datos se realizó mediante el dispositivo Kinect y su SDK correspondiente, que reconoce las partes del cuerpo y determina sus posiciones en tiempo real. Los clasificadores se entrenaron con dichos datos para poder determinar si una secuencia de posiciones de la mano es un gesto. Se implementó una librería de clasificadores con los métodos mencionados anteriormente, junto con las transformaciones para llevar una secuencia de posiciones a una representación adecuada para el reconocimiento. Se realizaron experimentos con la base de datos LNHG, compuesta de gestos que representan dígitos y letras, y con un base de datos de otro autor con gestos típicos de interacción, obteniendo resultados satisfactorios.Licenciado en InformáticaUniversidad Nacional de La PlataFacultad de InformáticaLanzarini, Laura CristinaCorbalán, Leonardo César2013-03-06info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionTesis de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/36025spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:59:26Zoai:sedici.unlp.edu.ar:10915/36025Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:59:27.07SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Reconocimiento de gestos dinámicos |
title |
Reconocimiento de gestos dinámicos |
spellingShingle |
Reconocimiento de gestos dinámicos Quiroga, Facundo Ciencias Informáticas aprendizaje automático Object recognition Neural nets SVM reconocimiento de gestos Learning redes neuronales |
title_short |
Reconocimiento de gestos dinámicos |
title_full |
Reconocimiento de gestos dinámicos |
title_fullStr |
Reconocimiento de gestos dinámicos |
title_full_unstemmed |
Reconocimiento de gestos dinámicos |
title_sort |
Reconocimiento de gestos dinámicos |
dc.creator.none.fl_str_mv |
Quiroga, Facundo |
author |
Quiroga, Facundo |
author_facet |
Quiroga, Facundo |
author_role |
author |
dc.contributor.none.fl_str_mv |
Lanzarini, Laura Cristina Corbalán, Leonardo César |
dc.subject.none.fl_str_mv |
Ciencias Informáticas aprendizaje automático Object recognition Neural nets SVM reconocimiento de gestos Learning redes neuronales |
topic |
Ciencias Informáticas aprendizaje automático Object recognition Neural nets SVM reconocimiento de gestos Learning redes neuronales |
dc.description.none.fl_txt_mv |
El objetivo de esta tesina es estudiar, desarrollar, analizar y comparar distintas técnicas de aprendizaje automático aplicables al reconocimiento automático de gestos dinámicos. Para ello, se definió un modelo de gestos a reconocer, se generó una base de datos de prueba con gestos llamadas LNHG, y se estudiaron e implementaron clasificadores basados en máquinas de vectores de soporte (SVM), redes neuronales feedfoward (FF) y redes neuronales competitivas (CPN), utilizando representaciones locales y globales para caracterizar los gestos. Además, se propone un nuevo modelo de reconocimiento de gestos, el clasificador neuronal competitivo (CNC). Los gestos a reconocer son movimientos de la mano, con invariancia a la velocidad, la rotación, la escala y la traslación. La captura de la información referida a los gestos para generar la base de datos se realizó mediante el dispositivo Kinect y su SDK correspondiente, que reconoce las partes del cuerpo y determina sus posiciones en tiempo real. Los clasificadores se entrenaron con dichos datos para poder determinar si una secuencia de posiciones de la mano es un gesto. Se implementó una librería de clasificadores con los métodos mencionados anteriormente, junto con las transformaciones para llevar una secuencia de posiciones a una representación adecuada para el reconocimiento. Se realizaron experimentos con la base de datos LNHG, compuesta de gestos que representan dígitos y letras, y con un base de datos de otro autor con gestos típicos de interacción, obteniendo resultados satisfactorios. Licenciado en Informática Universidad Nacional de La Plata Facultad de Informática |
description |
El objetivo de esta tesina es estudiar, desarrollar, analizar y comparar distintas técnicas de aprendizaje automático aplicables al reconocimiento automático de gestos dinámicos. Para ello, se definió un modelo de gestos a reconocer, se generó una base de datos de prueba con gestos llamadas LNHG, y se estudiaron e implementaron clasificadores basados en máquinas de vectores de soporte (SVM), redes neuronales feedfoward (FF) y redes neuronales competitivas (CPN), utilizando representaciones locales y globales para caracterizar los gestos. Además, se propone un nuevo modelo de reconocimiento de gestos, el clasificador neuronal competitivo (CNC). Los gestos a reconocer son movimientos de la mano, con invariancia a la velocidad, la rotación, la escala y la traslación. La captura de la información referida a los gestos para generar la base de datos se realizó mediante el dispositivo Kinect y su SDK correspondiente, que reconoce las partes del cuerpo y determina sus posiciones en tiempo real. Los clasificadores se entrenaron con dichos datos para poder determinar si una secuencia de posiciones de la mano es un gesto. Se implementó una librería de clasificadores con los métodos mencionados anteriormente, junto con las transformaciones para llevar una secuencia de posiciones a una representación adecuada para el reconocimiento. Se realizaron experimentos con la base de datos LNHG, compuesta de gestos que representan dígitos y letras, y con un base de datos de otro autor con gestos típicos de interacción, obteniendo resultados satisfactorios. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/acceptedVersion Tesis de grado http://purl.org/coar/resource_type/c_7a1f info:ar-repo/semantics/tesisDeGrado |
format |
bachelorThesis |
status_str |
acceptedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/36025 |
url |
http://sedici.unlp.edu.ar/handle/10915/36025 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615859191939072 |
score |
13.070432 |