Reconocimiento de gestos dinámicos

Autores
Quiroga, Facundo
Año de publicación
2013
Idioma
español castellano
Tipo de recurso
tesis de grado
Estado
versión aceptada
Colaborador/a o director/a de tesis
Lanzarini, Laura Cristina
Corbalán, Leonardo César
Descripción
El objetivo de esta tesina es estudiar, desarrollar, analizar y comparar distintas técnicas de aprendizaje automático aplicables al reconocimiento automático de gestos dinámicos. Para ello, se definió un modelo de gestos a reconocer, se generó una base de datos de prueba con gestos llamadas LNHG, y se estudiaron e implementaron clasificadores basados en máquinas de vectores de soporte (SVM), redes neuronales feedfoward (FF) y redes neuronales competitivas (CPN), utilizando representaciones locales y globales para caracterizar los gestos. Además, se propone un nuevo modelo de reconocimiento de gestos, el clasificador neuronal competitivo (CNC). Los gestos a reconocer son movimientos de la mano, con invariancia a la velocidad, la rotación, la escala y la traslación. La captura de la información referida a los gestos para generar la base de datos se realizó mediante el dispositivo Kinect y su SDK correspondiente, que reconoce las partes del cuerpo y determina sus posiciones en tiempo real. Los clasificadores se entrenaron con dichos datos para poder determinar si una secuencia de posiciones de la mano es un gesto. Se implementó una librería de clasificadores con los métodos mencionados anteriormente, junto con las transformaciones para llevar una secuencia de posiciones a una representación adecuada para el reconocimiento. Se realizaron experimentos con la base de datos LNHG, compuesta de gestos que representan dígitos y letras, y con un base de datos de otro autor con gestos típicos de interacción, obteniendo resultados satisfactorios.
Licenciado en Informática
Universidad Nacional de La Plata
Facultad de Informática
Materia
Ciencias Informáticas
aprendizaje automático
Object recognition
Neural nets
SVM
reconocimiento de gestos
Learning
redes neuronales
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/36025

id SEDICI_504e0b88c19a63a2c44c3b34d297816e
oai_identifier_str oai:sedici.unlp.edu.ar:10915/36025
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Reconocimiento de gestos dinámicosQuiroga, FacundoCiencias Informáticasaprendizaje automáticoObject recognitionNeural netsSVMreconocimiento de gestosLearningredes neuronalesEl objetivo de esta tesina es estudiar, desarrollar, analizar y comparar distintas técnicas de aprendizaje automático aplicables al reconocimiento automático de gestos dinámicos. Para ello, se definió un modelo de gestos a reconocer, se generó una base de datos de prueba con gestos llamadas LNHG, y se estudiaron e implementaron clasificadores basados en máquinas de vectores de soporte (SVM), redes neuronales feedfoward (FF) y redes neuronales competitivas (CPN), utilizando representaciones locales y globales para caracterizar los gestos. Además, se propone un nuevo modelo de reconocimiento de gestos, el clasificador neuronal competitivo (CNC). Los gestos a reconocer son movimientos de la mano, con invariancia a la velocidad, la rotación, la escala y la traslación. La captura de la información referida a los gestos para generar la base de datos se realizó mediante el dispositivo Kinect y su SDK correspondiente, que reconoce las partes del cuerpo y determina sus posiciones en tiempo real. Los clasificadores se entrenaron con dichos datos para poder determinar si una secuencia de posiciones de la mano es un gesto. Se implementó una librería de clasificadores con los métodos mencionados anteriormente, junto con las transformaciones para llevar una secuencia de posiciones a una representación adecuada para el reconocimiento. Se realizaron experimentos con la base de datos LNHG, compuesta de gestos que representan dígitos y letras, y con un base de datos de otro autor con gestos típicos de interacción, obteniendo resultados satisfactorios.Licenciado en InformáticaUniversidad Nacional de La PlataFacultad de InformáticaLanzarini, Laura CristinaCorbalán, Leonardo César2013-03-06info:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionTesis de gradohttp://purl.org/coar/resource_type/c_7a1finfo:ar-repo/semantics/tesisDeGradoapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/36025spainfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:59:26Zoai:sedici.unlp.edu.ar:10915/36025Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:59:27.07SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Reconocimiento de gestos dinámicos
title Reconocimiento de gestos dinámicos
spellingShingle Reconocimiento de gestos dinámicos
Quiroga, Facundo
Ciencias Informáticas
aprendizaje automático
Object recognition
Neural nets
SVM
reconocimiento de gestos
Learning
redes neuronales
title_short Reconocimiento de gestos dinámicos
title_full Reconocimiento de gestos dinámicos
title_fullStr Reconocimiento de gestos dinámicos
title_full_unstemmed Reconocimiento de gestos dinámicos
title_sort Reconocimiento de gestos dinámicos
dc.creator.none.fl_str_mv Quiroga, Facundo
author Quiroga, Facundo
author_facet Quiroga, Facundo
author_role author
dc.contributor.none.fl_str_mv Lanzarini, Laura Cristina
Corbalán, Leonardo César
dc.subject.none.fl_str_mv Ciencias Informáticas
aprendizaje automático
Object recognition
Neural nets
SVM
reconocimiento de gestos
Learning
redes neuronales
topic Ciencias Informáticas
aprendizaje automático
Object recognition
Neural nets
SVM
reconocimiento de gestos
Learning
redes neuronales
dc.description.none.fl_txt_mv El objetivo de esta tesina es estudiar, desarrollar, analizar y comparar distintas técnicas de aprendizaje automático aplicables al reconocimiento automático de gestos dinámicos. Para ello, se definió un modelo de gestos a reconocer, se generó una base de datos de prueba con gestos llamadas LNHG, y se estudiaron e implementaron clasificadores basados en máquinas de vectores de soporte (SVM), redes neuronales feedfoward (FF) y redes neuronales competitivas (CPN), utilizando representaciones locales y globales para caracterizar los gestos. Además, se propone un nuevo modelo de reconocimiento de gestos, el clasificador neuronal competitivo (CNC). Los gestos a reconocer son movimientos de la mano, con invariancia a la velocidad, la rotación, la escala y la traslación. La captura de la información referida a los gestos para generar la base de datos se realizó mediante el dispositivo Kinect y su SDK correspondiente, que reconoce las partes del cuerpo y determina sus posiciones en tiempo real. Los clasificadores se entrenaron con dichos datos para poder determinar si una secuencia de posiciones de la mano es un gesto. Se implementó una librería de clasificadores con los métodos mencionados anteriormente, junto con las transformaciones para llevar una secuencia de posiciones a una representación adecuada para el reconocimiento. Se realizaron experimentos con la base de datos LNHG, compuesta de gestos que representan dígitos y letras, y con un base de datos de otro autor con gestos típicos de interacción, obteniendo resultados satisfactorios.
Licenciado en Informática
Universidad Nacional de La Plata
Facultad de Informática
description El objetivo de esta tesina es estudiar, desarrollar, analizar y comparar distintas técnicas de aprendizaje automático aplicables al reconocimiento automático de gestos dinámicos. Para ello, se definió un modelo de gestos a reconocer, se generó una base de datos de prueba con gestos llamadas LNHG, y se estudiaron e implementaron clasificadores basados en máquinas de vectores de soporte (SVM), redes neuronales feedfoward (FF) y redes neuronales competitivas (CPN), utilizando representaciones locales y globales para caracterizar los gestos. Además, se propone un nuevo modelo de reconocimiento de gestos, el clasificador neuronal competitivo (CNC). Los gestos a reconocer son movimientos de la mano, con invariancia a la velocidad, la rotación, la escala y la traslación. La captura de la información referida a los gestos para generar la base de datos se realizó mediante el dispositivo Kinect y su SDK correspondiente, que reconoce las partes del cuerpo y determina sus posiciones en tiempo real. Los clasificadores se entrenaron con dichos datos para poder determinar si una secuencia de posiciones de la mano es un gesto. Se implementó una librería de clasificadores con los métodos mencionados anteriormente, junto con las transformaciones para llevar una secuencia de posiciones a una representación adecuada para el reconocimiento. Se realizaron experimentos con la base de datos LNHG, compuesta de gestos que representan dígitos y letras, y con un base de datos de otro autor con gestos típicos de interacción, obteniendo resultados satisfactorios.
publishDate 2013
dc.date.none.fl_str_mv 2013-03-06
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
info:eu-repo/semantics/acceptedVersion
Tesis de grado
http://purl.org/coar/resource_type/c_7a1f
info:ar-repo/semantics/tesisDeGrado
format bachelorThesis
status_str acceptedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/36025
url http://sedici.unlp.edu.ar/handle/10915/36025
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615859191939072
score 13.070432