LIBQIF: a quantitative information flow C++ toolkit library

Autores
Martinelli, Fernán G.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
A fundamental concern in computer security is to control information ow, whether to protect con dential information from being leaked, or to protect trusted information from being tainted. A classic approach is to try to enforce non-interference. Unfortunately, achieving non-interference is often not possible, because often there is a correlation between secrets and observables, either by design or due to some physical feature of the computation (side channels). One promising approach to relaxing noninterference, is to develop a quantitative theory of information ow that allows us to reason about how much information is being leaked, thus paving the way to the possibility of tolerating small leaks. In this work, we aim at developing a quantitative information ow C++ toolkit library, implementing several algorithms from the areas of QIF (more speci cally from four theories: Shannon Entropy, Min-Entropy, Guessing Entropy and G-Leakage) and Di erential Privacy. The library can be used by academics to facilitate research in these areas, as well as by students as a learning tool. A primary use of the library is to compute QIF measures as well as to generate plots, useful for understanding their behavior. Moreover, the library allows users to compute optimal di erentially private mechanisms, compare the utility of known mechanisms, compare the leakage of channels, compute gain functions that separate channels, and various other functionalities related to QIF.
Trabajo final de carrera
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
Materia
Ciencias Informáticas
QIF
quantitative
information flow
C++ library
Information flow controls
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/42039

id SEDICI_4d96daff967ee18d359ef326576cff85
oai_identifier_str oai:sedici.unlp.edu.ar:10915/42039
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling LIBQIF: a quantitative information flow C++ toolkit libraryMartinelli, Fernán G.Ciencias InformáticasQIFquantitativeinformation flowC++ libraryInformation flow controlsA fundamental concern in computer security is to control information ow, whether to protect con dential information from being leaked, or to protect trusted information from being tainted. A classic approach is to try to enforce non-interference. Unfortunately, achieving non-interference is often not possible, because often there is a correlation between secrets and observables, either by design or due to some physical feature of the computation (side channels). One promising approach to relaxing noninterference, is to develop a quantitative theory of information ow that allows us to reason about how much information is being leaked, thus paving the way to the possibility of tolerating small leaks. In this work, we aim at developing a quantitative information ow C++ toolkit library, implementing several algorithms from the areas of QIF (more speci cally from four theories: Shannon Entropy, Min-Entropy, Guessing Entropy and G-Leakage) and Di erential Privacy. The library can be used by academics to facilitate research in these areas, as well as by students as a learning tool. A primary use of the library is to compute QIF measures as well as to generate plots, useful for understanding their behavior. Moreover, the library allows users to compute optimal di erentially private mechanisms, compare the utility of known mechanisms, compare the leakage of channels, compute gain functions that separate channels, and various other functionalities related to QIF.Trabajo final de carreraSociedad Argentina de Informática e Investigación Operativa (SADIO)2014-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf46-66http://sedici.unlp.edu.ar/handle/10915/42039enginfo:eu-repo/semantics/altIdentifier/url/http://43jaiio.sadio.org.ar/proceedings/EST/6_764-2536-1-DR.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2946info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/3.0/Creative Commons Attribution 3.0 Unported (CC BY 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:53:51Zoai:sedici.unlp.edu.ar:10915/42039Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:53:51.983SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv LIBQIF: a quantitative information flow C++ toolkit library
title LIBQIF: a quantitative information flow C++ toolkit library
spellingShingle LIBQIF: a quantitative information flow C++ toolkit library
Martinelli, Fernán G.
Ciencias Informáticas
QIF
quantitative
information flow
C++ library
Information flow controls
title_short LIBQIF: a quantitative information flow C++ toolkit library
title_full LIBQIF: a quantitative information flow C++ toolkit library
title_fullStr LIBQIF: a quantitative information flow C++ toolkit library
title_full_unstemmed LIBQIF: a quantitative information flow C++ toolkit library
title_sort LIBQIF: a quantitative information flow C++ toolkit library
dc.creator.none.fl_str_mv Martinelli, Fernán G.
author Martinelli, Fernán G.
author_facet Martinelli, Fernán G.
author_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
QIF
quantitative
information flow
C++ library
Information flow controls
topic Ciencias Informáticas
QIF
quantitative
information flow
C++ library
Information flow controls
dc.description.none.fl_txt_mv A fundamental concern in computer security is to control information ow, whether to protect con dential information from being leaked, or to protect trusted information from being tainted. A classic approach is to try to enforce non-interference. Unfortunately, achieving non-interference is often not possible, because often there is a correlation between secrets and observables, either by design or due to some physical feature of the computation (side channels). One promising approach to relaxing noninterference, is to develop a quantitative theory of information ow that allows us to reason about how much information is being leaked, thus paving the way to the possibility of tolerating small leaks. In this work, we aim at developing a quantitative information ow C++ toolkit library, implementing several algorithms from the areas of QIF (more speci cally from four theories: Shannon Entropy, Min-Entropy, Guessing Entropy and G-Leakage) and Di erential Privacy. The library can be used by academics to facilitate research in these areas, as well as by students as a learning tool. A primary use of the library is to compute QIF measures as well as to generate plots, useful for understanding their behavior. Moreover, the library allows users to compute optimal di erentially private mechanisms, compare the utility of known mechanisms, compare the leakage of channels, compute gain functions that separate channels, and various other functionalities related to QIF.
Trabajo final de carrera
Sociedad Argentina de Informática e Investigación Operativa (SADIO)
description A fundamental concern in computer security is to control information ow, whether to protect con dential information from being leaked, or to protect trusted information from being tainted. A classic approach is to try to enforce non-interference. Unfortunately, achieving non-interference is often not possible, because often there is a correlation between secrets and observables, either by design or due to some physical feature of the computation (side channels). One promising approach to relaxing noninterference, is to develop a quantitative theory of information ow that allows us to reason about how much information is being leaked, thus paving the way to the possibility of tolerating small leaks. In this work, we aim at developing a quantitative information ow C++ toolkit library, implementing several algorithms from the areas of QIF (more speci cally from four theories: Shannon Entropy, Min-Entropy, Guessing Entropy and G-Leakage) and Di erential Privacy. The library can be used by academics to facilitate research in these areas, as well as by students as a learning tool. A primary use of the library is to compute QIF measures as well as to generate plots, useful for understanding their behavior. Moreover, the library allows users to compute optimal di erentially private mechanisms, compare the utility of known mechanisms, compare the leakage of channels, compute gain functions that separate channels, and various other functionalities related to QIF.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/42039
url http://sedici.unlp.edu.ar/handle/10915/42039
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://43jaiio.sadio.org.ar/proceedings/EST/6_764-2536-1-DR.pdf
info:eu-repo/semantics/altIdentifier/issn/1850-2946
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/3.0/
Creative Commons Attribution 3.0 Unported (CC BY 3.0)
dc.format.none.fl_str_mv application/pdf
46-66
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846063977945104384
score 13.22299