Modeling Students through Analysis of Social Networks Topics
- Autores
- Charnelli, María Emilia; Lanzarini, Laura Cristina; Díaz, Francisco Javier
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Educational Data Mining gathers the multiple methods that allow new and useful information extraction from great volumes of data coming from the educational context. The goal of this article is to obtain a model of the students of the Computer Science School of the UNLP from their participation in Facebook. The work describes the process of extraction of latent topics in posts made in public groups related to the School, and the modeling of the students from the topics discovered. Additionally, it includes the preprocessing done to the collected data, which constitutes a fundamental stage since it strongly conditions the performance of the models to be obtained. Finally, obtained results are presented together with conclusions and future lines of work.
XIII Workshop Tecnología Informática Aplicada en Educación (WTIAE).
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Minería de Datos
learning analytics
topic modeling
user modeling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/55814
Ver los metadatos del registro completo
id |
SEDICI_4d4a28ca77bc7e28c750d8d2506c6346 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/55814 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Modeling Students through Analysis of Social Networks TopicsCharnelli, María EmiliaLanzarini, Laura CristinaDíaz, Francisco JavierCiencias InformáticasMinería de Datoslearning analyticstopic modelinguser modelingEducational Data Mining gathers the multiple methods that allow new and useful information extraction from great volumes of data coming from the educational context. The goal of this article is to obtain a model of the students of the Computer Science School of the UNLP from their participation in Facebook. The work describes the process of extraction of latent topics in posts made in public groups related to the School, and the modeling of the students from the topics discovered. Additionally, it includes the preprocessing done to the collected data, which constitutes a fundamental stage since it strongly conditions the performance of the models to be obtained. Finally, obtained results are presented together with conclusions and future lines of work.XIII Workshop Tecnología Informática Aplicada en Educación (WTIAE).Red de Universidades con Carreras en Informática (RedUNCI)2016-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf363-371http://sedici.unlp.edu.ar/handle/10915/55814enginfo:eu-repo/semantics/reference/hdl/10915/55718info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:49:14Zoai:sedici.unlp.edu.ar:10915/55814Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:49:14.903SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Modeling Students through Analysis of Social Networks Topics |
title |
Modeling Students through Analysis of Social Networks Topics |
spellingShingle |
Modeling Students through Analysis of Social Networks Topics Charnelli, María Emilia Ciencias Informáticas Minería de Datos learning analytics topic modeling user modeling |
title_short |
Modeling Students through Analysis of Social Networks Topics |
title_full |
Modeling Students through Analysis of Social Networks Topics |
title_fullStr |
Modeling Students through Analysis of Social Networks Topics |
title_full_unstemmed |
Modeling Students through Analysis of Social Networks Topics |
title_sort |
Modeling Students through Analysis of Social Networks Topics |
dc.creator.none.fl_str_mv |
Charnelli, María Emilia Lanzarini, Laura Cristina Díaz, Francisco Javier |
author |
Charnelli, María Emilia |
author_facet |
Charnelli, María Emilia Lanzarini, Laura Cristina Díaz, Francisco Javier |
author_role |
author |
author2 |
Lanzarini, Laura Cristina Díaz, Francisco Javier |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Minería de Datos learning analytics topic modeling user modeling |
topic |
Ciencias Informáticas Minería de Datos learning analytics topic modeling user modeling |
dc.description.none.fl_txt_mv |
Educational Data Mining gathers the multiple methods that allow new and useful information extraction from great volumes of data coming from the educational context. The goal of this article is to obtain a model of the students of the Computer Science School of the UNLP from their participation in Facebook. The work describes the process of extraction of latent topics in posts made in public groups related to the School, and the modeling of the students from the topics discovered. Additionally, it includes the preprocessing done to the collected data, which constitutes a fundamental stage since it strongly conditions the performance of the models to be obtained. Finally, obtained results are presented together with conclusions and future lines of work. XIII Workshop Tecnología Informática Aplicada en Educación (WTIAE). Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Educational Data Mining gathers the multiple methods that allow new and useful information extraction from great volumes of data coming from the educational context. The goal of this article is to obtain a model of the students of the Computer Science School of the UNLP from their participation in Facebook. The work describes the process of extraction of latent topics in posts made in public groups related to the School, and the modeling of the students from the topics discovered. Additionally, it includes the preprocessing done to the collected data, which constitutes a fundamental stage since it strongly conditions the performance of the models to be obtained. Finally, obtained results are presented together with conclusions and future lines of work. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/55814 |
url |
http://sedici.unlp.edu.ar/handle/10915/55814 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/reference/hdl/10915/55718 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 363-371 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532265301213184 |
score |
13.000565 |