The Argentine economy on Twitter

Autores
Aromí, José Daniel; De Raco, Sergio Andrés
Año de publicación
2021
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
We propose and implement a methodology for data collection and analysis of Twitter discussions linked to the Argentine economy. Starting with a list of “seed users” later expanded based on following-follower relationships, we build a network of interactions and fetch their tweet timelines. Then, we use a community detection model to compress the structure of underlying relationships and a standard topic model to represent the latent issues discussed in each community. Results suggest that this strategy is able to learn a useful organization and to summarize the contents of social media exchanges of the Argentine economic tweetosphere. Potential applications could be to characterize the links between different economic sectors and to construct community-level indicators of opinions.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
Economics
Social network analysis
Community detection
Topic modeling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/140122

id SEDICI_36324466bf9dd588651255c714c601ce
oai_identifier_str oai:sedici.unlp.edu.ar:10915/140122
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling The Argentine economy on TwitterAromí, José DanielDe Raco, Sergio AndrésCiencias InformáticasEconomicsSocial network analysisCommunity detectionTopic modelingWe propose and implement a methodology for data collection and analysis of Twitter discussions linked to the Argentine economy. Starting with a list of “seed users” later expanded based on following-follower relationships, we build a network of interactions and fetch their tweet timelines. Then, we use a community detection model to compress the structure of underlying relationships and a standard topic model to represent the latent issues discussed in each community. Results suggest that this strategy is able to learn a useful organization and to summarize the contents of social media exchanges of the Argentine economic tweetosphere. Potential applications could be to characterize the links between different economic sectors and to construct community-level indicators of opinions.Sociedad Argentina de Informática e Investigación Operativa2021-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf15-18http://sedici.unlp.edu.ar/handle/10915/140122enginfo:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-03.pdfinfo:eu-repo/semantics/altIdentifier/issn/2683-8966info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:27:26Zoai:sedici.unlp.edu.ar:10915/140122Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:27:26.43SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv The Argentine economy on Twitter
title The Argentine economy on Twitter
spellingShingle The Argentine economy on Twitter
Aromí, José Daniel
Ciencias Informáticas
Economics
Social network analysis
Community detection
Topic modeling
title_short The Argentine economy on Twitter
title_full The Argentine economy on Twitter
title_fullStr The Argentine economy on Twitter
title_full_unstemmed The Argentine economy on Twitter
title_sort The Argentine economy on Twitter
dc.creator.none.fl_str_mv Aromí, José Daniel
De Raco, Sergio Andrés
author Aromí, José Daniel
author_facet Aromí, José Daniel
De Raco, Sergio Andrés
author_role author
author2 De Raco, Sergio Andrés
author2_role author
dc.subject.none.fl_str_mv Ciencias Informáticas
Economics
Social network analysis
Community detection
Topic modeling
topic Ciencias Informáticas
Economics
Social network analysis
Community detection
Topic modeling
dc.description.none.fl_txt_mv We propose and implement a methodology for data collection and analysis of Twitter discussions linked to the Argentine economy. Starting with a list of “seed users” later expanded based on following-follower relationships, we build a network of interactions and fetch their tweet timelines. Then, we use a community detection model to compress the structure of underlying relationships and a standard topic model to represent the latent issues discussed in each community. Results suggest that this strategy is able to learn a useful organization and to summarize the contents of social media exchanges of the Argentine economic tweetosphere. Potential applications could be to characterize the links between different economic sectors and to construct community-level indicators of opinions.
Sociedad Argentina de Informática e Investigación Operativa
description We propose and implement a methodology for data collection and analysis of Twitter discussions linked to the Argentine economy. Starting with a list of “seed users” later expanded based on following-follower relationships, we build a network of interactions and fetch their tweet timelines. Then, we use a community detection model to compress the structure of underlying relationships and a standard topic model to represent the latent issues discussed in each community. Results suggest that this strategy is able to learn a useful organization and to summarize the contents of social media exchanges of the Argentine economic tweetosphere. Potential applications could be to characterize the links between different economic sectors and to construct community-level indicators of opinions.
publishDate 2021
dc.date.none.fl_str_mv 2021-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/140122
url http://sedici.unlp.edu.ar/handle/10915/140122
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://50jaiio.sadio.org.ar/pdfs/agranda/AGRANDA-03.pdf
info:eu-repo/semantics/altIdentifier/issn/2683-8966
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/3.0/
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)
dc.format.none.fl_str_mv application/pdf
15-18
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064320934313984
score 13.22299