Transient numerical assessment of race car dry-sump oil under different maneuvers

Autores
Corzo, Santiago F.; Nigro, Norberto M.; Risso, Jose; Ramajo, Damián E.
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
A numerical assessment of a dry-sump oil system was performed by Computational Fluid Dynamics (CFD). Unlike conventional cars, race cars are subjected to high accelerations that induce oil sloshing. Hence, dry-sump oil systems are required to collect the oil outside of the engine prior to be pumped inside of it again. To avoid engine malfunctions, the dry-sump must guarantee continuously oil suction in every maneuver. To perform such simulations, the model was subjected to different car maneuvers extracted from data acquisition available from real race car, showing that single and combined maneuvers, such as acceleration, braking and turnings can induce downward, upward and lateral accelerations higher than 2g during several seconds. Therefore, four different single maneuvers (acceleration, deceleration, turn right and turn left) as well as a set of contaminated maneuvers (braking and turning) were studied. Simulations were achieved by mean of the Volume of Fluid Method (VOF) for a air-oil system. The influence of the turbulence modeling was also investigated. First a forerunner design was analyzed and both the race car tests and CFD simulations showed that for the most extreme maneuvers (pure braking and combined with braking with turning right) the original design failed before the end of the maneuvers by air suction in the pump inlet. In consequence, the dry-sump was redesigned and assessed under these extreme conditions until to ensure stable oil aspiration.
Publicado en: Mecánica Computacional vol. XXXV, no. 7.
Facultad de Ingeniería
Materia
Ingeniería
CFD
Dry-sump oil
Friction curve
Race Car
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/94486

id SEDICI_4bcbe990910672d05c5144439d2bc7a7
oai_identifier_str oai:sedici.unlp.edu.ar:10915/94486
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Transient numerical assessment of race car dry-sump oil under different maneuversCorzo, Santiago F.Nigro, Norberto M.Risso, JoseRamajo, Damián E.IngenieríaCFDDry-sump oilFriction curveRace CarA numerical assessment of a dry-sump oil system was performed by Computational Fluid Dynamics (CFD). Unlike conventional cars, race cars are subjected to high accelerations that induce oil sloshing. Hence, dry-sump oil systems are required to collect the oil outside of the engine prior to be pumped inside of it again. To avoid engine malfunctions, the dry-sump must guarantee continuously oil suction in every maneuver. To perform such simulations, the model was subjected to different car maneuvers extracted from data acquisition available from real race car, showing that single and combined maneuvers, such as acceleration, braking and turnings can induce downward, upward and lateral accelerations higher than 2g during several seconds. Therefore, four different single maneuvers (acceleration, deceleration, turn right and turn left) as well as a set of contaminated maneuvers (braking and turning) were studied. Simulations were achieved by mean of the Volume of Fluid Method (VOF) for a air-oil system. The influence of the turbulence modeling was also investigated. First a forerunner design was analyzed and both the race car tests and CFD simulations showed that for the most extreme maneuvers (pure braking and combined with braking with turning right) the original design failed before the end of the maneuvers by air suction in the pump inlet. In consequence, the dry-sump was redesigned and assessed under these extreme conditions until to ensure stable oil aspiration.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 7.Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf307http://sedici.unlp.edu.ar/handle/10915/94486enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5258info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:19:42Zoai:sedici.unlp.edu.ar:10915/94486Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:19:42.426SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Transient numerical assessment of race car dry-sump oil under different maneuvers
title Transient numerical assessment of race car dry-sump oil under different maneuvers
spellingShingle Transient numerical assessment of race car dry-sump oil under different maneuvers
Corzo, Santiago F.
Ingeniería
CFD
Dry-sump oil
Friction curve
Race Car
title_short Transient numerical assessment of race car dry-sump oil under different maneuvers
title_full Transient numerical assessment of race car dry-sump oil under different maneuvers
title_fullStr Transient numerical assessment of race car dry-sump oil under different maneuvers
title_full_unstemmed Transient numerical assessment of race car dry-sump oil under different maneuvers
title_sort Transient numerical assessment of race car dry-sump oil under different maneuvers
dc.creator.none.fl_str_mv Corzo, Santiago F.
Nigro, Norberto M.
Risso, Jose
Ramajo, Damián E.
author Corzo, Santiago F.
author_facet Corzo, Santiago F.
Nigro, Norberto M.
Risso, Jose
Ramajo, Damián E.
author_role author
author2 Nigro, Norberto M.
Risso, Jose
Ramajo, Damián E.
author2_role author
author
author
dc.subject.none.fl_str_mv Ingeniería
CFD
Dry-sump oil
Friction curve
Race Car
topic Ingeniería
CFD
Dry-sump oil
Friction curve
Race Car
dc.description.none.fl_txt_mv A numerical assessment of a dry-sump oil system was performed by Computational Fluid Dynamics (CFD). Unlike conventional cars, race cars are subjected to high accelerations that induce oil sloshing. Hence, dry-sump oil systems are required to collect the oil outside of the engine prior to be pumped inside of it again. To avoid engine malfunctions, the dry-sump must guarantee continuously oil suction in every maneuver. To perform such simulations, the model was subjected to different car maneuvers extracted from data acquisition available from real race car, showing that single and combined maneuvers, such as acceleration, braking and turnings can induce downward, upward and lateral accelerations higher than 2g during several seconds. Therefore, four different single maneuvers (acceleration, deceleration, turn right and turn left) as well as a set of contaminated maneuvers (braking and turning) were studied. Simulations were achieved by mean of the Volume of Fluid Method (VOF) for a air-oil system. The influence of the turbulence modeling was also investigated. First a forerunner design was analyzed and both the race car tests and CFD simulations showed that for the most extreme maneuvers (pure braking and combined with braking with turning right) the original design failed before the end of the maneuvers by air suction in the pump inlet. In consequence, the dry-sump was redesigned and assessed under these extreme conditions until to ensure stable oil aspiration.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 7.
Facultad de Ingeniería
description A numerical assessment of a dry-sump oil system was performed by Computational Fluid Dynamics (CFD). Unlike conventional cars, race cars are subjected to high accelerations that induce oil sloshing. Hence, dry-sump oil systems are required to collect the oil outside of the engine prior to be pumped inside of it again. To avoid engine malfunctions, the dry-sump must guarantee continuously oil suction in every maneuver. To perform such simulations, the model was subjected to different car maneuvers extracted from data acquisition available from real race car, showing that single and combined maneuvers, such as acceleration, braking and turnings can induce downward, upward and lateral accelerations higher than 2g during several seconds. Therefore, four different single maneuvers (acceleration, deceleration, turn right and turn left) as well as a set of contaminated maneuvers (braking and turning) were studied. Simulations were achieved by mean of the Volume of Fluid Method (VOF) for a air-oil system. The influence of the turbulence modeling was also investigated. First a forerunner design was analyzed and both the race car tests and CFD simulations showed that for the most extreme maneuvers (pure braking and combined with braking with turning right) the original design failed before the end of the maneuvers by air suction in the pump inlet. In consequence, the dry-sump was redesigned and assessed under these extreme conditions until to ensure stable oil aspiration.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/94486
url http://sedici.unlp.edu.ar/handle/10915/94486
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5258
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
307
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616071057768448
score 13.070432