Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation models

Autores
Coussirat, Miguel G.; Moll, Flavio H.; Fontanals, Alfred
Año de publicación
2017
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Cavitating flow is a complex phenomenon related with turbulent and multiphase flows with mass transfer between the liquid and gaseous phases. This flow is affected by several factors as surrounding pressure, the local state of the turbulence, the non-condensable dissolved gases concentration and others effects. To study this kind of flow, several numerical models have been developed and they are now available in commercial and in-house software. A numerical model for cavitating flows involves a multiphase model, including both mass transfer and turbulence submodels. Inside of a commercial or an in-house numerical code there are several options and possible combinations of these submodels. A selection of the more suitable combination from this broad offer is a difficult task, involving then a subsequent careful calibration of the models selected, due to the fact that the default values for the calibration parameters that have these submodels, are related to simple flow conditions, i.e., simple geometries and flows without any detachment. Under cavitation conditions, these conditions are not the common situation. This work deals with the enhancement of some previous results obtained that allow to say that it is possible to capture several cavitating flows characteristics, improving a ‘standard’ numerical (i.e., without any calibration) simulation by means of a detailed tuning of the production/dissipation coefficients present in the equations of the Eddy Viscosity Models for turbulence, and other parameters related to the two-phase state of the flow. The numerical results obtained were compared against experimental data for pressure, velocity and the structure of the two-phase cavity. It is demonstrated that a careful calibration of both the turbulence and the cavitation submodels used is of paramount importance, because there is a very close relation between the turbulence state of the flow and the cavitation inception/developing conditions. A suitable calibration work allows also diminish the mesh size, saving a lot of computational resources or the use of more sophisticated strategies for turbulence simulations (e.g., Large Eddy Simulations). Those are very expensive in terms of the necessary computational resources required. A more general conclusions than obtained in previous works are presented, because results for other different nozzles configurations were obtained.
Publicado en: Mecánica Computacional vol. XXXV, no. 15
Facultad de Ingeniería
Materia
Ingeniería
Cavitating flow
Turbulence
Orifices
Nozzle-injectors
Validation/calibration tasks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/94992

id SEDICI_4baac42246437f8e0cc4dd029cea4db2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/94992
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation modelsCoussirat, Miguel G.Moll, Flavio H.Fontanals, AlfredIngenieríaCavitating flowTurbulenceOrificesNozzle-injectorsValidation/calibration tasksCavitating flow is a complex phenomenon related with turbulent and multiphase flows with mass transfer between the liquid and gaseous phases. This flow is affected by several factors as surrounding pressure, the local state of the turbulence, the non-condensable dissolved gases concentration and others effects. To study this kind of flow, several numerical models have been developed and they are now available in commercial and in-house software. A numerical model for cavitating flows involves a multiphase model, including both mass transfer and turbulence submodels. Inside of a commercial or an in-house numerical code there are several options and possible combinations of these submodels. A selection of the more suitable combination from this broad offer is a difficult task, involving then a subsequent careful calibration of the models selected, due to the fact that the default values for the calibration parameters that have these submodels, are related to simple flow conditions, i.e., simple geometries and flows without any detachment. Under cavitation conditions, these conditions are not the common situation. This work deals with the enhancement of some previous results obtained that allow to say that it is possible to capture several cavitating flows characteristics, improving a ‘standard’ numerical (i.e., without any calibration) simulation by means of a detailed tuning of the production/dissipation coefficients present in the equations of the Eddy Viscosity Models for turbulence, and other parameters related to the two-phase state of the flow. The numerical results obtained were compared against experimental data for pressure, velocity and the structure of the two-phase cavity. It is demonstrated that a careful calibration of both the turbulence and the cavitation submodels used is of paramount importance, because there is a very close relation between the turbulence state of the flow and the cavitation inception/developing conditions. A suitable calibration work allows also diminish the mesh size, saving a lot of computational resources or the use of more sophisticated strategies for turbulence simulations (e.g., Large Eddy Simulations). Those are very expensive in terms of the necessary computational resources required. A more general conclusions than obtained in previous works are presented, because results for other different nozzles configurations were obtained.Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 15Facultad de Ingeniería2017-11info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf819-841http://sedici.unlp.edu.ar/handle/10915/94992enginfo:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5303info:eu-repo/semantics/altIdentifier/issn/2591-3522info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-11-05T12:59:12Zoai:sedici.unlp.edu.ar:10915/94992Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-11-05 12:59:12.375SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation models
title Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation models
spellingShingle Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation models
Coussirat, Miguel G.
Ingeniería
Cavitating flow
Turbulence
Orifices
Nozzle-injectors
Validation/calibration tasks
title_short Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation models
title_full Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation models
title_fullStr Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation models
title_full_unstemmed Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation models
title_sort Reproduction of the cavitating flows patterns in several nozzles geometries by using calibrated turbulence and cavitation models
dc.creator.none.fl_str_mv Coussirat, Miguel G.
Moll, Flavio H.
Fontanals, Alfred
author Coussirat, Miguel G.
author_facet Coussirat, Miguel G.
Moll, Flavio H.
Fontanals, Alfred
author_role author
author2 Moll, Flavio H.
Fontanals, Alfred
author2_role author
author
dc.subject.none.fl_str_mv Ingeniería
Cavitating flow
Turbulence
Orifices
Nozzle-injectors
Validation/calibration tasks
topic Ingeniería
Cavitating flow
Turbulence
Orifices
Nozzle-injectors
Validation/calibration tasks
dc.description.none.fl_txt_mv Cavitating flow is a complex phenomenon related with turbulent and multiphase flows with mass transfer between the liquid and gaseous phases. This flow is affected by several factors as surrounding pressure, the local state of the turbulence, the non-condensable dissolved gases concentration and others effects. To study this kind of flow, several numerical models have been developed and they are now available in commercial and in-house software. A numerical model for cavitating flows involves a multiphase model, including both mass transfer and turbulence submodels. Inside of a commercial or an in-house numerical code there are several options and possible combinations of these submodels. A selection of the more suitable combination from this broad offer is a difficult task, involving then a subsequent careful calibration of the models selected, due to the fact that the default values for the calibration parameters that have these submodels, are related to simple flow conditions, i.e., simple geometries and flows without any detachment. Under cavitation conditions, these conditions are not the common situation. This work deals with the enhancement of some previous results obtained that allow to say that it is possible to capture several cavitating flows characteristics, improving a ‘standard’ numerical (i.e., without any calibration) simulation by means of a detailed tuning of the production/dissipation coefficients present in the equations of the Eddy Viscosity Models for turbulence, and other parameters related to the two-phase state of the flow. The numerical results obtained were compared against experimental data for pressure, velocity and the structure of the two-phase cavity. It is demonstrated that a careful calibration of both the turbulence and the cavitation submodels used is of paramount importance, because there is a very close relation between the turbulence state of the flow and the cavitation inception/developing conditions. A suitable calibration work allows also diminish the mesh size, saving a lot of computational resources or the use of more sophisticated strategies for turbulence simulations (e.g., Large Eddy Simulations). Those are very expensive in terms of the necessary computational resources required. A more general conclusions than obtained in previous works are presented, because results for other different nozzles configurations were obtained.
Publicado en: <i>Mecánica Computacional</i> vol. XXXV, no. 15
Facultad de Ingeniería
description Cavitating flow is a complex phenomenon related with turbulent and multiphase flows with mass transfer between the liquid and gaseous phases. This flow is affected by several factors as surrounding pressure, the local state of the turbulence, the non-condensable dissolved gases concentration and others effects. To study this kind of flow, several numerical models have been developed and they are now available in commercial and in-house software. A numerical model for cavitating flows involves a multiphase model, including both mass transfer and turbulence submodels. Inside of a commercial or an in-house numerical code there are several options and possible combinations of these submodels. A selection of the more suitable combination from this broad offer is a difficult task, involving then a subsequent careful calibration of the models selected, due to the fact that the default values for the calibration parameters that have these submodels, are related to simple flow conditions, i.e., simple geometries and flows without any detachment. Under cavitation conditions, these conditions are not the common situation. This work deals with the enhancement of some previous results obtained that allow to say that it is possible to capture several cavitating flows characteristics, improving a ‘standard’ numerical (i.e., without any calibration) simulation by means of a detailed tuning of the production/dissipation coefficients present in the equations of the Eddy Viscosity Models for turbulence, and other parameters related to the two-phase state of the flow. The numerical results obtained were compared against experimental data for pressure, velocity and the structure of the two-phase cavity. It is demonstrated that a careful calibration of both the turbulence and the cavitation submodels used is of paramount importance, because there is a very close relation between the turbulence state of the flow and the cavitation inception/developing conditions. A suitable calibration work allows also diminish the mesh size, saving a lot of computational resources or the use of more sophisticated strategies for turbulence simulations (e.g., Large Eddy Simulations). Those are very expensive in terms of the necessary computational resources required. A more general conclusions than obtained in previous works are presented, because results for other different nozzles configurations were obtained.
publishDate 2017
dc.date.none.fl_str_mv 2017-11
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/94992
url http://sedici.unlp.edu.ar/handle/10915/94992
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://cimec.org.ar/ojs/index.php/mc/article/view/5303
info:eu-repo/semantics/altIdentifier/issn/2591-3522
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
819-841
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1847978634555424768
score 13.084122