Discovering network relations in big time series with application to bioinformatics
- Autores
- Rubiolo, Mariano; Milone, Diego H.; Stegmayer, Georgina
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Big Data concerns large-volume, complex and growing data sets, with multiple and autonomous sources. It is now rapidly expanding in all science and engineering domains. Time series represent an important class of big data that can be obtained from several applications, such as medicine (electrocardiogram), environmental (daily temperature), financial (weekly sales totals, and prices of mutual funds and stocks), as well as from many areas, such as socialnetworks and biology. Bioinformatics seeks to provide tools and analyses that facilitate understanding of living systems, by analyzing and correlating biological information. In particular, as increasingly large amounts of genes information have become available in the last years, more efficient algorithms for dealing with such big data in genomics are required. There is an increasing interest in this field for the discovery of the network of regulations among a group of genes, named Gene Regulation Networks (GRN), by analyzing the genes expression profiles represented as timeseries. In it has been proposed the GRNNminer method, which allows discovering the subyacent GRN among a group of genes, through the proper modeling of the temporal dynamics of the gene expression profiles with artificial neural networks. However, it implies building and training a pool of neural models for each possible gentogen relationship, which derives in executing a very large set of experiments with O( n 2 ) order, where n is the total of involved genes. This work presents a proposal for dramatically reducing such experiments number to O( (n/k)2 ) when big timeseries is involved for reconstructing a GRN from such data, by previously clustering genes profiles in k groups using selforganizing maps (SOM). This way, the GRNNminer can be applied over smaller sets of timeseries, only those appearing in the same cluster.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
big data
Genes
Neural nets
bioinformatics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/51977
Ver los metadatos del registro completo
id |
SEDICI_4743cc8b9bcf52060999d322bf4af3d9 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/51977 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Discovering network relations in big time series with application to bioinformaticsRubiolo, MarianoMilone, Diego H.Stegmayer, GeorginaCiencias Informáticasbig dataGenesNeural netsbioinformaticsBig Data concerns large-volume, complex and growing data sets, with multiple and autonomous sources. It is now rapidly expanding in all science and engineering domains. Time series represent an important class of big data that can be obtained from several applications, such as medicine (electrocardiogram), environmental (daily temperature), financial (weekly sales totals, and prices of mutual funds and stocks), as well as from many areas, such as socialnetworks and biology. Bioinformatics seeks to provide tools and analyses that facilitate understanding of living systems, by analyzing and correlating biological information. In particular, as increasingly large amounts of genes information have become available in the last years, more efficient algorithms for dealing with such big data in genomics are required. There is an increasing interest in this field for the discovery of the network of regulations among a group of genes, named Gene Regulation Networks (GRN), by analyzing the genes expression profiles represented as timeseries. In it has been proposed the GRNNminer method, which allows discovering the subyacent GRN among a group of genes, through the proper modeling of the temporal dynamics of the gene expression profiles with artificial neural networks. However, it implies building and training a pool of neural models for each possible gentogen relationship, which derives in executing a very large set of experiments with O( n 2 ) order, where n is the total of involved genes. This work presents a proposal for dramatically reducing such experiments number to O( (n/k)2 ) when big timeseries is involved for reconstructing a GRN from such data, by previously clustering genes profiles in k groups using selforganizing maps (SOM). This way, the GRNNminer can be applied over smaller sets of timeseries, only those appearing in the same cluster.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2015-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf41-42http://sedici.unlp.edu.ar/handle/10915/51977enginfo:eu-repo/semantics/altIdentifier/url/http://44jaiio.sadio.org.ar/sites/default/files/agranda41-42.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7569info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:04:30Zoai:sedici.unlp.edu.ar:10915/51977Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:04:30.506SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Discovering network relations in big time series with application to bioinformatics |
title |
Discovering network relations in big time series with application to bioinformatics |
spellingShingle |
Discovering network relations in big time series with application to bioinformatics Rubiolo, Mariano Ciencias Informáticas big data Genes Neural nets bioinformatics |
title_short |
Discovering network relations in big time series with application to bioinformatics |
title_full |
Discovering network relations in big time series with application to bioinformatics |
title_fullStr |
Discovering network relations in big time series with application to bioinformatics |
title_full_unstemmed |
Discovering network relations in big time series with application to bioinformatics |
title_sort |
Discovering network relations in big time series with application to bioinformatics |
dc.creator.none.fl_str_mv |
Rubiolo, Mariano Milone, Diego H. Stegmayer, Georgina |
author |
Rubiolo, Mariano |
author_facet |
Rubiolo, Mariano Milone, Diego H. Stegmayer, Georgina |
author_role |
author |
author2 |
Milone, Diego H. Stegmayer, Georgina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas big data Genes Neural nets bioinformatics |
topic |
Ciencias Informáticas big data Genes Neural nets bioinformatics |
dc.description.none.fl_txt_mv |
Big Data concerns large-volume, complex and growing data sets, with multiple and autonomous sources. It is now rapidly expanding in all science and engineering domains. Time series represent an important class of big data that can be obtained from several applications, such as medicine (electrocardiogram), environmental (daily temperature), financial (weekly sales totals, and prices of mutual funds and stocks), as well as from many areas, such as socialnetworks and biology. Bioinformatics seeks to provide tools and analyses that facilitate understanding of living systems, by analyzing and correlating biological information. In particular, as increasingly large amounts of genes information have become available in the last years, more efficient algorithms for dealing with such big data in genomics are required. There is an increasing interest in this field for the discovery of the network of regulations among a group of genes, named Gene Regulation Networks (GRN), by analyzing the genes expression profiles represented as timeseries. In it has been proposed the GRNNminer method, which allows discovering the subyacent GRN among a group of genes, through the proper modeling of the temporal dynamics of the gene expression profiles with artificial neural networks. However, it implies building and training a pool of neural models for each possible gentogen relationship, which derives in executing a very large set of experiments with O( n 2 ) order, where n is the total of involved genes. This work presents a proposal for dramatically reducing such experiments number to O( (n/k)2 ) when big timeseries is involved for reconstructing a GRN from such data, by previously clustering genes profiles in k groups using selforganizing maps (SOM). This way, the GRNNminer can be applied over smaller sets of timeseries, only those appearing in the same cluster. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
description |
Big Data concerns large-volume, complex and growing data sets, with multiple and autonomous sources. It is now rapidly expanding in all science and engineering domains. Time series represent an important class of big data that can be obtained from several applications, such as medicine (electrocardiogram), environmental (daily temperature), financial (weekly sales totals, and prices of mutual funds and stocks), as well as from many areas, such as socialnetworks and biology. Bioinformatics seeks to provide tools and analyses that facilitate understanding of living systems, by analyzing and correlating biological information. In particular, as increasingly large amounts of genes information have become available in the last years, more efficient algorithms for dealing with such big data in genomics are required. There is an increasing interest in this field for the discovery of the network of regulations among a group of genes, named Gene Regulation Networks (GRN), by analyzing the genes expression profiles represented as timeseries. In it has been proposed the GRNNminer method, which allows discovering the subyacent GRN among a group of genes, through the proper modeling of the temporal dynamics of the gene expression profiles with artificial neural networks. However, it implies building and training a pool of neural models for each possible gentogen relationship, which derives in executing a very large set of experiments with O( n 2 ) order, where n is the total of involved genes. This work presents a proposal for dramatically reducing such experiments number to O( (n/k)2 ) when big timeseries is involved for reconstructing a GRN from such data, by previously clustering genes profiles in k groups using selforganizing maps (SOM). This way, the GRNNminer can be applied over smaller sets of timeseries, only those appearing in the same cluster. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/51977 |
url |
http://sedici.unlp.edu.ar/handle/10915/51977 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://44jaiio.sadio.org.ar/sites/default/files/agranda41-42.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7569 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 41-42 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615913676996608 |
score |
13.070432 |