Green High Performance Simulation for AMB models of Aedes aegypti
- Autores
- Montes de Oca, Erica Soledad; Suppi, Remo; De Giusti, Laura Cristina; Naiouf, Marcelo
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The increase in temperature caused by the climate change has resulted in the rapid dissemination of infectious diseases. Given the alert for the current situation, the World Health Organization (WHO) has declared a state of health emergency, highlighting the severity of the situation in some countries. For this reason, coming up with knowledge and tools that can help control and eradicate the vectors propagating these diseases is of the utmost importance. Highperformance modeling and simulation can be used to produce knowledge and strategies that allow predicting infections, guiding actions and/or training health/civil protection agents. The model developed as part of this research work is aimed at assisting the decision-making process for disease prevention and control, as well as evaluating the reproduction and predicting the evolution of the Aedes aegypti mosquito, which is the transmitting vector of the dengue, Zika and chikungunya diseases. Decisionmaking based on these models requires a large number of simulations to achieve results with statistical variability. The objective of this paper is to demonstrate that the GPU is a suitable platform from the point of view of the reduction of energy consumed for HPC simulations. It is also shown that it is possible to define energy prediction models that allow scientists to plan their experiments based on energy consumption and select those that are representative for decision making by reducing energy consumption in HPC simulations.
El aumento de la temperatura a raíz del cambio climático, ha dado lugar a la rápida expansión de enfermedades infecciosas. Dada la alerta por la situación actual, la Organización Mundial de la Salud (OMS) ha declarado la emergencia sanitaria poniendo de manifiesto la grave situación que se vive en algunos países. Es por ello que es necesario aportar conocimiento y herramientas que ayuden al control y erradicación del vector que propaga estas enfermedades. El modelado y la simulación de altas prestaciones pueden ayudar a aportar conocimiento y estrategias que permitan predecir infecciones, orientar actuaciones y/o formar a los agentes de protección civil/salud. El modelo desarrollado en este trabajo, tiene por objetivo ayudar a la toma de decisiones de prevención y control, a evaluar la reproducción y a predecir la evolución del mosquito Aedes aegypti, transmisor de las enfermedades dengue, Zika y chikungunya. Dado que son necesarias un elevado número de simulaciones para tener resultados con variabilidad estadística, se ha utilizado GPU. Con esta plataforma se busca: su potencia de cómputo para reducir el tiempo de ejecución y, además, reducir el consumo de energía. Para ello se proponen diferentes escenarios y experimentos para comprobar los beneficios de la arquitectura propuesta.
Facultad de Informática - Materia
-
Ciencias Informáticas
Aedes aegypti
GPU
Green Computing
ABM models
High Performance Simulation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/97193
Ver los metadatos del registro completo
id |
SEDICI_46c9d4e8bd204c7b7bde48731e634394 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/97193 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Green High Performance Simulation for AMB models of Aedes aegyptiSimulación green de alto rendimiento de un modelo basado en agentes del mosquito Aedes aegyptiMontes de Oca, Erica SoledadSuppi, RemoDe Giusti, Laura CristinaNaiouf, MarceloCiencias InformáticasAedes aegyptiGPUGreen ComputingABM modelsHigh Performance SimulationThe increase in temperature caused by the climate change has resulted in the rapid dissemination of infectious diseases. Given the alert for the current situation, the World Health Organization (WHO) has declared a state of health emergency, highlighting the severity of the situation in some countries. For this reason, coming up with knowledge and tools that can help control and eradicate the vectors propagating these diseases is of the utmost importance. Highperformance modeling and simulation can be used to produce knowledge and strategies that allow predicting infections, guiding actions and/or training health/civil protection agents. The model developed as part of this research work is aimed at assisting the decision-making process for disease prevention and control, as well as evaluating the reproduction and predicting the evolution of the Aedes aegypti mosquito, which is the transmitting vector of the dengue, Zika and chikungunya diseases. Decisionmaking based on these models requires a large number of simulations to achieve results with statistical variability. The objective of this paper is to demonstrate that the GPU is a suitable platform from the point of view of the reduction of energy consumed for HPC simulations. It is also shown that it is possible to define energy prediction models that allow scientists to plan their experiments based on energy consumption and select those that are representative for decision making by reducing energy consumption in HPC simulations.El aumento de la temperatura a raíz del cambio climático, ha dado lugar a la rápida expansión de enfermedades infecciosas. Dada la alerta por la situación actual, la Organización Mundial de la Salud (OMS) ha declarado la emergencia sanitaria poniendo de manifiesto la grave situación que se vive en algunos países. Es por ello que es necesario aportar conocimiento y herramientas que ayuden al control y erradicación del vector que propaga estas enfermedades. El modelado y la simulación de altas prestaciones pueden ayudar a aportar conocimiento y estrategias que permitan predecir infecciones, orientar actuaciones y/o formar a los agentes de protección civil/salud. El modelo desarrollado en este trabajo, tiene por objetivo ayudar a la toma de decisiones de prevención y control, a evaluar la reproducción y a predecir la evolución del mosquito Aedes aegypti, transmisor de las enfermedades dengue, Zika y chikungunya. Dado que son necesarias un elevado número de simulaciones para tener resultados con variabilidad estadística, se ha utilizado GPU. Con esta plataforma se busca: su potencia de cómputo para reducir el tiempo de ejecución y, además, reducir el consumo de energía. Para ello se proponen diferentes escenarios y experimentos para comprobar los beneficios de la arquitectura propuesta.Facultad de Informática2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/97193enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.20.e02info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:55Zoai:sedici.unlp.edu.ar:10915/97193Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:55.53SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Green High Performance Simulation for AMB models of Aedes aegypti Simulación green de alto rendimiento de un modelo basado en agentes del mosquito Aedes aegypti |
title |
Green High Performance Simulation for AMB models of Aedes aegypti |
spellingShingle |
Green High Performance Simulation for AMB models of Aedes aegypti Montes de Oca, Erica Soledad Ciencias Informáticas Aedes aegypti GPU Green Computing ABM models High Performance Simulation |
title_short |
Green High Performance Simulation for AMB models of Aedes aegypti |
title_full |
Green High Performance Simulation for AMB models of Aedes aegypti |
title_fullStr |
Green High Performance Simulation for AMB models of Aedes aegypti |
title_full_unstemmed |
Green High Performance Simulation for AMB models of Aedes aegypti |
title_sort |
Green High Performance Simulation for AMB models of Aedes aegypti |
dc.creator.none.fl_str_mv |
Montes de Oca, Erica Soledad Suppi, Remo De Giusti, Laura Cristina Naiouf, Marcelo |
author |
Montes de Oca, Erica Soledad |
author_facet |
Montes de Oca, Erica Soledad Suppi, Remo De Giusti, Laura Cristina Naiouf, Marcelo |
author_role |
author |
author2 |
Suppi, Remo De Giusti, Laura Cristina Naiouf, Marcelo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Aedes aegypti GPU Green Computing ABM models High Performance Simulation |
topic |
Ciencias Informáticas Aedes aegypti GPU Green Computing ABM models High Performance Simulation |
dc.description.none.fl_txt_mv |
The increase in temperature caused by the climate change has resulted in the rapid dissemination of infectious diseases. Given the alert for the current situation, the World Health Organization (WHO) has declared a state of health emergency, highlighting the severity of the situation in some countries. For this reason, coming up with knowledge and tools that can help control and eradicate the vectors propagating these diseases is of the utmost importance. Highperformance modeling and simulation can be used to produce knowledge and strategies that allow predicting infections, guiding actions and/or training health/civil protection agents. The model developed as part of this research work is aimed at assisting the decision-making process for disease prevention and control, as well as evaluating the reproduction and predicting the evolution of the Aedes aegypti mosquito, which is the transmitting vector of the dengue, Zika and chikungunya diseases. Decisionmaking based on these models requires a large number of simulations to achieve results with statistical variability. The objective of this paper is to demonstrate that the GPU is a suitable platform from the point of view of the reduction of energy consumed for HPC simulations. It is also shown that it is possible to define energy prediction models that allow scientists to plan their experiments based on energy consumption and select those that are representative for decision making by reducing energy consumption in HPC simulations. El aumento de la temperatura a raíz del cambio climático, ha dado lugar a la rápida expansión de enfermedades infecciosas. Dada la alerta por la situación actual, la Organización Mundial de la Salud (OMS) ha declarado la emergencia sanitaria poniendo de manifiesto la grave situación que se vive en algunos países. Es por ello que es necesario aportar conocimiento y herramientas que ayuden al control y erradicación del vector que propaga estas enfermedades. El modelado y la simulación de altas prestaciones pueden ayudar a aportar conocimiento y estrategias que permitan predecir infecciones, orientar actuaciones y/o formar a los agentes de protección civil/salud. El modelo desarrollado en este trabajo, tiene por objetivo ayudar a la toma de decisiones de prevención y control, a evaluar la reproducción y a predecir la evolución del mosquito Aedes aegypti, transmisor de las enfermedades dengue, Zika y chikungunya. Dado que son necesarias un elevado número de simulaciones para tener resultados con variabilidad estadística, se ha utilizado GPU. Con esta plataforma se busca: su potencia de cómputo para reducir el tiempo de ejecución y, además, reducir el consumo de energía. Para ello se proponen diferentes escenarios y experimentos para comprobar los beneficios de la arquitectura propuesta. Facultad de Informática |
description |
The increase in temperature caused by the climate change has resulted in the rapid dissemination of infectious diseases. Given the alert for the current situation, the World Health Organization (WHO) has declared a state of health emergency, highlighting the severity of the situation in some countries. For this reason, coming up with knowledge and tools that can help control and eradicate the vectors propagating these diseases is of the utmost importance. Highperformance modeling and simulation can be used to produce knowledge and strategies that allow predicting infections, guiding actions and/or training health/civil protection agents. The model developed as part of this research work is aimed at assisting the decision-making process for disease prevention and control, as well as evaluating the reproduction and predicting the evolution of the Aedes aegypti mosquito, which is the transmitting vector of the dengue, Zika and chikungunya diseases. Decisionmaking based on these models requires a large number of simulations to achieve results with statistical variability. The objective of this paper is to demonstrate that the GPU is a suitable platform from the point of view of the reduction of energy consumed for HPC simulations. It is also shown that it is possible to define energy prediction models that allow scientists to plan their experiments based on energy consumption and select those that are representative for decision making by reducing energy consumption in HPC simulations. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/97193 |
url |
http://sedici.unlp.edu.ar/handle/10915/97193 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1666-6038 info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.20.e02 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616084003487744 |
score |
13.070432 |