Green High Performance Simulation for AMB models of Aedes aegypti

Autores
Montes de Oca, Erica Soledad; Suppi, Remo; De Giusti, Laura Cristina; Naiouf, Marcelo
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The increase in temperature caused by the climate change has resulted in the rapid dissemination of infectious diseases. Given the alert for the current situation, the World Health Organization (WHO) has declared a state of health emergency, highlighting the severity of the situation in some countries. For this reason, coming up with knowledge and tools that can help control and eradicate the vectors propagating these diseases is of the utmost importance. Highperformance modeling and simulation can be used to produce knowledge and strategies that allow predicting infections, guiding actions and/or training health/civil protection agents. The model developed as part of this research work is aimed at assisting the decision-making process for disease prevention and control, as well as evaluating the reproduction and predicting the evolution of the Aedes aegypti mosquito, which is the transmitting vector of the dengue, Zika and chikungunya diseases. Decisionmaking based on these models requires a large number of simulations to achieve results with statistical variability. The objective of this paper is to demonstrate that the GPU is a suitable platform from the point of view of the reduction of energy consumed for HPC simulations. It is also shown that it is possible to define energy prediction models that allow scientists to plan their experiments based on energy consumption and select those that are representative for decision making by reducing energy consumption in HPC simulations.
El aumento de la temperatura a raíz del cambio climático, ha dado lugar a la rápida expansión de enfermedades infecciosas. Dada la alerta por la situación actual, la Organización Mundial de la Salud (OMS) ha declarado la emergencia sanitaria poniendo de manifiesto la grave situación que se vive en algunos países. Es por ello que es necesario aportar conocimiento y herramientas que ayuden al control y erradicación del vector que propaga estas enfermedades. El modelado y la simulación de altas prestaciones pueden ayudar a aportar conocimiento y estrategias que permitan predecir infecciones, orientar actuaciones y/o formar a los agentes de protección civil/salud. El modelo desarrollado en este trabajo, tiene por objetivo ayudar a la toma de decisiones de prevención y control, a evaluar la reproducción y a predecir la evolución del mosquito Aedes aegypti, transmisor de las enfermedades dengue, Zika y chikungunya. Dado que son necesarias un elevado número de simulaciones para tener resultados con variabilidad estadística, se ha utilizado GPU. Con esta plataforma se busca: su potencia de cómputo para reducir el tiempo de ejecución y, además, reducir el consumo de energía. Para ello se proponen diferentes escenarios y experimentos para comprobar los beneficios de la arquitectura propuesta.
Facultad de Informática
Materia
Ciencias Informáticas
Aedes aegypti
GPU
Green Computing
ABM models
High Performance Simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/97193

id SEDICI_46c9d4e8bd204c7b7bde48731e634394
oai_identifier_str oai:sedici.unlp.edu.ar:10915/97193
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Green High Performance Simulation for AMB models of Aedes aegyptiSimulación green de alto rendimiento de un modelo basado en agentes del mosquito Aedes aegyptiMontes de Oca, Erica SoledadSuppi, RemoDe Giusti, Laura CristinaNaiouf, MarceloCiencias InformáticasAedes aegyptiGPUGreen ComputingABM modelsHigh Performance SimulationThe increase in temperature caused by the climate change has resulted in the rapid dissemination of infectious diseases. Given the alert for the current situation, the World Health Organization (WHO) has declared a state of health emergency, highlighting the severity of the situation in some countries. For this reason, coming up with knowledge and tools that can help control and eradicate the vectors propagating these diseases is of the utmost importance. Highperformance modeling and simulation can be used to produce knowledge and strategies that allow predicting infections, guiding actions and/or training health/civil protection agents. The model developed as part of this research work is aimed at assisting the decision-making process for disease prevention and control, as well as evaluating the reproduction and predicting the evolution of the Aedes aegypti mosquito, which is the transmitting vector of the dengue, Zika and chikungunya diseases. Decisionmaking based on these models requires a large number of simulations to achieve results with statistical variability. The objective of this paper is to demonstrate that the GPU is a suitable platform from the point of view of the reduction of energy consumed for HPC simulations. It is also shown that it is possible to define energy prediction models that allow scientists to plan their experiments based on energy consumption and select those that are representative for decision making by reducing energy consumption in HPC simulations.El aumento de la temperatura a raíz del cambio climático, ha dado lugar a la rápida expansión de enfermedades infecciosas. Dada la alerta por la situación actual, la Organización Mundial de la Salud (OMS) ha declarado la emergencia sanitaria poniendo de manifiesto la grave situación que se vive en algunos países. Es por ello que es necesario aportar conocimiento y herramientas que ayuden al control y erradicación del vector que propaga estas enfermedades. El modelado y la simulación de altas prestaciones pueden ayudar a aportar conocimiento y estrategias que permitan predecir infecciones, orientar actuaciones y/o formar a los agentes de protección civil/salud. El modelo desarrollado en este trabajo, tiene por objetivo ayudar a la toma de decisiones de prevención y control, a evaluar la reproducción y a predecir la evolución del mosquito Aedes aegypti, transmisor de las enfermedades dengue, Zika y chikungunya. Dado que son necesarias un elevado número de simulaciones para tener resultados con variabilidad estadística, se ha utilizado GPU. Con esta plataforma se busca: su potencia de cómputo para reducir el tiempo de ejecución y, además, reducir el consumo de energía. Para ello se proponen diferentes escenarios y experimentos para comprobar los beneficios de la arquitectura propuesta.Facultad de Informática2020-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/97193enginfo:eu-repo/semantics/altIdentifier/issn/1666-6038info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.20.e02info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/4.0/Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:20:55Zoai:sedici.unlp.edu.ar:10915/97193Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:20:55.53SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Green High Performance Simulation for AMB models of Aedes aegypti
Simulación green de alto rendimiento de un modelo basado en agentes del mosquito Aedes aegypti
title Green High Performance Simulation for AMB models of Aedes aegypti
spellingShingle Green High Performance Simulation for AMB models of Aedes aegypti
Montes de Oca, Erica Soledad
Ciencias Informáticas
Aedes aegypti
GPU
Green Computing
ABM models
High Performance Simulation
title_short Green High Performance Simulation for AMB models of Aedes aegypti
title_full Green High Performance Simulation for AMB models of Aedes aegypti
title_fullStr Green High Performance Simulation for AMB models of Aedes aegypti
title_full_unstemmed Green High Performance Simulation for AMB models of Aedes aegypti
title_sort Green High Performance Simulation for AMB models of Aedes aegypti
dc.creator.none.fl_str_mv Montes de Oca, Erica Soledad
Suppi, Remo
De Giusti, Laura Cristina
Naiouf, Marcelo
author Montes de Oca, Erica Soledad
author_facet Montes de Oca, Erica Soledad
Suppi, Remo
De Giusti, Laura Cristina
Naiouf, Marcelo
author_role author
author2 Suppi, Remo
De Giusti, Laura Cristina
Naiouf, Marcelo
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Aedes aegypti
GPU
Green Computing
ABM models
High Performance Simulation
topic Ciencias Informáticas
Aedes aegypti
GPU
Green Computing
ABM models
High Performance Simulation
dc.description.none.fl_txt_mv The increase in temperature caused by the climate change has resulted in the rapid dissemination of infectious diseases. Given the alert for the current situation, the World Health Organization (WHO) has declared a state of health emergency, highlighting the severity of the situation in some countries. For this reason, coming up with knowledge and tools that can help control and eradicate the vectors propagating these diseases is of the utmost importance. Highperformance modeling and simulation can be used to produce knowledge and strategies that allow predicting infections, guiding actions and/or training health/civil protection agents. The model developed as part of this research work is aimed at assisting the decision-making process for disease prevention and control, as well as evaluating the reproduction and predicting the evolution of the Aedes aegypti mosquito, which is the transmitting vector of the dengue, Zika and chikungunya diseases. Decisionmaking based on these models requires a large number of simulations to achieve results with statistical variability. The objective of this paper is to demonstrate that the GPU is a suitable platform from the point of view of the reduction of energy consumed for HPC simulations. It is also shown that it is possible to define energy prediction models that allow scientists to plan their experiments based on energy consumption and select those that are representative for decision making by reducing energy consumption in HPC simulations.
El aumento de la temperatura a raíz del cambio climático, ha dado lugar a la rápida expansión de enfermedades infecciosas. Dada la alerta por la situación actual, la Organización Mundial de la Salud (OMS) ha declarado la emergencia sanitaria poniendo de manifiesto la grave situación que se vive en algunos países. Es por ello que es necesario aportar conocimiento y herramientas que ayuden al control y erradicación del vector que propaga estas enfermedades. El modelado y la simulación de altas prestaciones pueden ayudar a aportar conocimiento y estrategias que permitan predecir infecciones, orientar actuaciones y/o formar a los agentes de protección civil/salud. El modelo desarrollado en este trabajo, tiene por objetivo ayudar a la toma de decisiones de prevención y control, a evaluar la reproducción y a predecir la evolución del mosquito Aedes aegypti, transmisor de las enfermedades dengue, Zika y chikungunya. Dado que son necesarias un elevado número de simulaciones para tener resultados con variabilidad estadística, se ha utilizado GPU. Con esta plataforma se busca: su potencia de cómputo para reducir el tiempo de ejecución y, además, reducir el consumo de energía. Para ello se proponen diferentes escenarios y experimentos para comprobar los beneficios de la arquitectura propuesta.
Facultad de Informática
description The increase in temperature caused by the climate change has resulted in the rapid dissemination of infectious diseases. Given the alert for the current situation, the World Health Organization (WHO) has declared a state of health emergency, highlighting the severity of the situation in some countries. For this reason, coming up with knowledge and tools that can help control and eradicate the vectors propagating these diseases is of the utmost importance. Highperformance modeling and simulation can be used to produce knowledge and strategies that allow predicting infections, guiding actions and/or training health/civil protection agents. The model developed as part of this research work is aimed at assisting the decision-making process for disease prevention and control, as well as evaluating the reproduction and predicting the evolution of the Aedes aegypti mosquito, which is the transmitting vector of the dengue, Zika and chikungunya diseases. Decisionmaking based on these models requires a large number of simulations to achieve results with statistical variability. The objective of this paper is to demonstrate that the GPU is a suitable platform from the point of view of the reduction of energy consumed for HPC simulations. It is also shown that it is possible to define energy prediction models that allow scientists to plan their experiments based on energy consumption and select those that are representative for decision making by reducing energy consumption in HPC simulations.
publishDate 2020
dc.date.none.fl_str_mv 2020-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/97193
url http://sedici.unlp.edu.ar/handle/10915/97193
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1666-6038
info:eu-repo/semantics/altIdentifier/doi/10.24215/16666038.20.e02
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616084003487744
score 13.070432