Solving hard multiobjective problems with a hybridized method
- Autores
- Cagnina, Leticia; Esquivel, Susana Cecilia
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper presents a hybrid method to solve hard multi- objective problems. The proposed approach adopts an epsilon-constraint method which uses a Particle Swarm Optimizer to get points near of the true Pareto front. In this approach, only few points will be generated and then, new intermediate points will be calculated using an interpola- tion method, to increase the among of points in the output Pareto front. The proposed approach is validated using two difficult multiobjective test problems and the results are compared with those obtained by a multiobjective evolutionary algorithm representative of the state of the art: NSGA-II.
Presentado en el X Workshop Agentes y Sistemas Inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
multi- objective problems
Particle Swarm Optimizer
Hybrid systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/20889
Ver los metadatos del registro completo
id |
SEDICI_449df190d898ece8f30b1af6d85b62f5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/20889 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Solving hard multiobjective problems with a hybridized methodCagnina, LeticiaEsquivel, Susana CeciliaCiencias Informáticasmulti- objective problemsParticle Swarm OptimizerHybrid systemsThis paper presents a hybrid method to solve hard multi- objective problems. The proposed approach adopts an epsilon-constraint method which uses a Particle Swarm Optimizer to get points near of the true Pareto front. In this approach, only few points will be generated and then, new intermediate points will be calculated using an interpola- tion method, to increase the among of points in the output Pareto front. The proposed approach is validated using two difficult multiobjective test problems and the results are compared with those obtained by a multiobjective evolutionary algorithm representative of the state of the art: NSGA-II.Presentado en el X Workshop Agentes y Sistemas InteligentesRed de Universidades con Carreras en Informática (RedUNCI)2009-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf109-118http://sedici.unlp.edu.ar/handle/10915/20889enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:25Zoai:sedici.unlp.edu.ar:10915/20889Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:25.864SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Solving hard multiobjective problems with a hybridized method |
title |
Solving hard multiobjective problems with a hybridized method |
spellingShingle |
Solving hard multiobjective problems with a hybridized method Cagnina, Leticia Ciencias Informáticas multi- objective problems Particle Swarm Optimizer Hybrid systems |
title_short |
Solving hard multiobjective problems with a hybridized method |
title_full |
Solving hard multiobjective problems with a hybridized method |
title_fullStr |
Solving hard multiobjective problems with a hybridized method |
title_full_unstemmed |
Solving hard multiobjective problems with a hybridized method |
title_sort |
Solving hard multiobjective problems with a hybridized method |
dc.creator.none.fl_str_mv |
Cagnina, Leticia Esquivel, Susana Cecilia |
author |
Cagnina, Leticia |
author_facet |
Cagnina, Leticia Esquivel, Susana Cecilia |
author_role |
author |
author2 |
Esquivel, Susana Cecilia |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas multi- objective problems Particle Swarm Optimizer Hybrid systems |
topic |
Ciencias Informáticas multi- objective problems Particle Swarm Optimizer Hybrid systems |
dc.description.none.fl_txt_mv |
This paper presents a hybrid method to solve hard multi- objective problems. The proposed approach adopts an epsilon-constraint method which uses a Particle Swarm Optimizer to get points near of the true Pareto front. In this approach, only few points will be generated and then, new intermediate points will be calculated using an interpola- tion method, to increase the among of points in the output Pareto front. The proposed approach is validated using two difficult multiobjective test problems and the results are compared with those obtained by a multiobjective evolutionary algorithm representative of the state of the art: NSGA-II. Presentado en el X Workshop Agentes y Sistemas Inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper presents a hybrid method to solve hard multi- objective problems. The proposed approach adopts an epsilon-constraint method which uses a Particle Swarm Optimizer to get points near of the true Pareto front. In this approach, only few points will be generated and then, new intermediate points will be calculated using an interpola- tion method, to increase the among of points in the output Pareto front. The proposed approach is validated using two difficult multiobjective test problems and the results are compared with those obtained by a multiobjective evolutionary algorithm representative of the state of the art: NSGA-II. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/20889 |
url |
http://sedici.unlp.edu.ar/handle/10915/20889 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf 109-118 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844615801408061440 |
score |
13.070432 |