Driving to a fast IMS feature vector computing

Autores
Fernández, Jacqueline; Guerrero, Roberto A.; Miranda, Natalia Carolina; Piccoli, María Fabiana
Año de publicación
2008
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La creciente cantidad de imágenes transmitidas a través de Internet ha llevado al desarrollo de Sistemas de Minería de Imágenes de propósito general. La performance de un SMI depende en gran medida de una rápida y buena especificación del vector característica que describe unívocamente a una imagen completa. El tamaño del vector y las relaciones existentes entre cada una de las características evaluadas y su tiempo de procesamiento son críticos, más aún cuando la cantidad de imágenes es lo suficientemente grande. Una posible solución consiste en el uso de paralelismo en las diferentes tareas involucradas en un SMI. Hoy en día, los clusters de computadoras son una opción ampliamente utilizada, con un bajo costo y alto rendimiento, principalmente para máquinas de propósitos específicos y se adaptan a la resolución de problemas de procesamiento de imágenes con un alto grado de paralelismo y localidad de datos. En este paper nos focalizaremos en el paralelismo de la etapa de procesamiento de un sistema SMI con la intención de acelerar el cálculo del vector característica por medio de una arquitectura cluster intentando brindar una mejor performance al sistema SMI en su totalidad.
Increasing amount of image data transmitted via Internet has triggered the development of general purposes Image Mining Systems (IMS). An IMS performance relies on a good and fast feature vector specification that describes univocally an entire image. Vector size and the relationship between each evaluated feature and its computation time are critical, moreover when the image amount is big enough. Decreasing this IMS computational complexity by means of parallelism at the different involved tasks is one solution. Nowadays clusters of computers are already widely used as a low cost and high utility option to special-purpose machines, and suited to solve image processing problems with a high degree of data locality and parallelism. At this paper, we will focus on parallelism into the IMS processing stage trying to accelerate the feature vector calculus thru a cluster architecture attempting to give a better performance to the whole image mining system.
Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Signal processing
Sistemas de Minería de Imágenes
Input/output
computación paralela
Parallel
Image Mining Systems (IMS)
parallel computing
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/21793

id SEDICI_43ea540be4fd2e42f59a6bdb6475728f
oai_identifier_str oai:sedici.unlp.edu.ar:10915/21793
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Driving to a fast IMS feature vector computingFernández, JacquelineGuerrero, Roberto A.Miranda, Natalia CarolinaPiccoli, María FabianaCiencias InformáticasSignal processingSistemas de Minería de ImágenesInput/outputcomputación paralelaParallelImage Mining Systems (IMS)parallel computingLa creciente cantidad de imágenes transmitidas a través de Internet ha llevado al desarrollo de Sistemas de Minería de Imágenes de propósito general. La performance de un SMI depende en gran medida de una rápida y buena especificación del vector característica que describe unívocamente a una imagen completa. El tamaño del vector y las relaciones existentes entre cada una de las características evaluadas y su tiempo de procesamiento son críticos, más aún cuando la cantidad de imágenes es lo suficientemente grande. Una posible solución consiste en el uso de paralelismo en las diferentes tareas involucradas en un SMI. Hoy en día, los clusters de computadoras son una opción ampliamente utilizada, con un bajo costo y alto rendimiento, principalmente para máquinas de propósitos específicos y se adaptan a la resolución de problemas de procesamiento de imágenes con un alto grado de paralelismo y localidad de datos. En este paper nos focalizaremos en el paralelismo de la etapa de procesamiento de un sistema SMI con la intención de acelerar el cálculo del vector característica por medio de una arquitectura cluster intentando brindar una mejor performance al sistema SMI en su totalidad.Increasing amount of image data transmitted via Internet has triggered the development of general purposes Image Mining Systems (IMS). An IMS performance relies on a good and fast feature vector specification that describes univocally an entire image. Vector size and the relationship between each evaluated feature and its computation time are critical, moreover when the image amount is big enough. Decreasing this IMS computational complexity by means of parallelism at the different involved tasks is one solution. Nowadays clusters of computers are already widely used as a low cost and high utility option to special-purpose machines, and suited to solve image processing problems with a high degree of data locality and parallelism. At this paper, we will focus on parallelism into the IMS processing stage trying to accelerate the feature vector calculus thru a cluster architecture attempting to give a better performance to the whole image mining system.Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI)2008-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/21793enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T10:54:47Zoai:sedici.unlp.edu.ar:10915/21793Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 10:54:47.398SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Driving to a fast IMS feature vector computing
title Driving to a fast IMS feature vector computing
spellingShingle Driving to a fast IMS feature vector computing
Fernández, Jacqueline
Ciencias Informáticas
Signal processing
Sistemas de Minería de Imágenes
Input/output
computación paralela
Parallel
Image Mining Systems (IMS)
parallel computing
title_short Driving to a fast IMS feature vector computing
title_full Driving to a fast IMS feature vector computing
title_fullStr Driving to a fast IMS feature vector computing
title_full_unstemmed Driving to a fast IMS feature vector computing
title_sort Driving to a fast IMS feature vector computing
dc.creator.none.fl_str_mv Fernández, Jacqueline
Guerrero, Roberto A.
Miranda, Natalia Carolina
Piccoli, María Fabiana
author Fernández, Jacqueline
author_facet Fernández, Jacqueline
Guerrero, Roberto A.
Miranda, Natalia Carolina
Piccoli, María Fabiana
author_role author
author2 Guerrero, Roberto A.
Miranda, Natalia Carolina
Piccoli, María Fabiana
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Signal processing
Sistemas de Minería de Imágenes
Input/output
computación paralela
Parallel
Image Mining Systems (IMS)
parallel computing
topic Ciencias Informáticas
Signal processing
Sistemas de Minería de Imágenes
Input/output
computación paralela
Parallel
Image Mining Systems (IMS)
parallel computing
dc.description.none.fl_txt_mv La creciente cantidad de imágenes transmitidas a través de Internet ha llevado al desarrollo de Sistemas de Minería de Imágenes de propósito general. La performance de un SMI depende en gran medida de una rápida y buena especificación del vector característica que describe unívocamente a una imagen completa. El tamaño del vector y las relaciones existentes entre cada una de las características evaluadas y su tiempo de procesamiento son críticos, más aún cuando la cantidad de imágenes es lo suficientemente grande. Una posible solución consiste en el uso de paralelismo en las diferentes tareas involucradas en un SMI. Hoy en día, los clusters de computadoras son una opción ampliamente utilizada, con un bajo costo y alto rendimiento, principalmente para máquinas de propósitos específicos y se adaptan a la resolución de problemas de procesamiento de imágenes con un alto grado de paralelismo y localidad de datos. En este paper nos focalizaremos en el paralelismo de la etapa de procesamiento de un sistema SMI con la intención de acelerar el cálculo del vector característica por medio de una arquitectura cluster intentando brindar una mejor performance al sistema SMI en su totalidad.
Increasing amount of image data transmitted via Internet has triggered the development of general purposes Image Mining Systems (IMS). An IMS performance relies on a good and fast feature vector specification that describes univocally an entire image. Vector size and the relationship between each evaluated feature and its computation time are critical, moreover when the image amount is big enough. Decreasing this IMS computational complexity by means of parallelism at the different involved tasks is one solution. Nowadays clusters of computers are already widely used as a low cost and high utility option to special-purpose machines, and suited to solve image processing problems with a high degree of data locality and parallelism. At this paper, we will focus on parallelism into the IMS processing stage trying to accelerate the feature vector calculus thru a cluster architecture attempting to give a better performance to the whole image mining system.
Workshop de Computación Gráfica, Imágenes y Visualización (WCGIV)
Red de Universidades con Carreras en Informática (RedUNCI)
description La creciente cantidad de imágenes transmitidas a través de Internet ha llevado al desarrollo de Sistemas de Minería de Imágenes de propósito general. La performance de un SMI depende en gran medida de una rápida y buena especificación del vector característica que describe unívocamente a una imagen completa. El tamaño del vector y las relaciones existentes entre cada una de las características evaluadas y su tiempo de procesamiento son críticos, más aún cuando la cantidad de imágenes es lo suficientemente grande. Una posible solución consiste en el uso de paralelismo en las diferentes tareas involucradas en un SMI. Hoy en día, los clusters de computadoras son una opción ampliamente utilizada, con un bajo costo y alto rendimiento, principalmente para máquinas de propósitos específicos y se adaptan a la resolución de problemas de procesamiento de imágenes con un alto grado de paralelismo y localidad de datos. En este paper nos focalizaremos en el paralelismo de la etapa de procesamiento de un sistema SMI con la intención de acelerar el cálculo del vector característica por medio de una arquitectura cluster intentando brindar una mejor performance al sistema SMI en su totalidad.
publishDate 2008
dc.date.none.fl_str_mv 2008-10
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/21793
url http://sedici.unlp.edu.ar/handle/10915/21793
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844615805958881280
score 13.070432