Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineering
- Autores
- Berghoff, Carla F.; Cortizo, María Susana; Cortizo, Ana María
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Tissue engineering actual tendencies leads to the development of biocompatible matrices with accurate physical and mechanical properties in bone reconstruction. As a regeneration of a new tissue is achieved, the scaffold is no longer needed and so it is reasonable to use biodegradable scaffolds. The rate of degradation must be in parallel with the tissue regeneration, and is very important to provide long term construct biocompatibility, because only natural tissue will remain in the body–a neo-organ. In this context one of the most common compound used is the natural polymer chitosan, whose mechanical properties can be improved by adding synthetic polymers. The great interest in this macromolecule is due to its proved biocompatibility and biodegradation properties. Matrix also requires the capacity to transport osteogenic agents which enhance bone regeneration. Bisphosphonates are a new class of synthetic compounds structurally related to pyrophosphate, an endogenous modulator in homeostasis of calcium, and they are clinically used for various metabolic bone disorders such as Paget’s disease, hypercalcemia of malignancy, bone metastasis and osteoporosis. The reduced targetability of some bisphosphonates in relationship to the dose increased and its hepatosplenic accumulation has been reported. It is due to high precipitability with divalent ions in the circulation in blood plasma, which may be taken up by reticuloendothelial system as foreign substances. Therefore, new drug delivery systems are needed to overcome these problems. The aim of our work is the development of a scaffold for tissue engineering based in chitosan/poly-ε-caprolactone blend which contains an adequate concentration of alendronate (a nitrogen bisphosphonate) for osteoblastic bone growth without toxic effects.
Facultad de Ciencias Exactas - Materia
-
Ciencias Exactas
Huesos
biocompatible matrices, bone reconstruction, bone reconstruction - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/76241
Ver los metadatos del registro completo
| id |
SEDICI_4275b4b791892813b47293749eac7ab4 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/76241 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineeringBerghoff, Carla F.Cortizo, María SusanaCortizo, Ana MaríaCiencias ExactasHuesosbiocompatible matrices, bone reconstruction, bone reconstructionTissue engineering actual tendencies leads to the development of biocompatible matrices with accurate physical and mechanical properties in bone reconstruction. As a regeneration of a new tissue is achieved, the scaffold is no longer needed and so it is reasonable to use biodegradable scaffolds. The rate of degradation must be in parallel with the tissue regeneration, and is very important to provide long term construct biocompatibility, because only natural tissue will remain in the body–a neo-organ. In this context one of the most common compound used is the natural polymer chitosan, whose mechanical properties can be improved by adding synthetic polymers. The great interest in this macromolecule is due to its proved biocompatibility and biodegradation properties. Matrix also requires the capacity to transport osteogenic agents which enhance bone regeneration. Bisphosphonates are a new class of synthetic compounds structurally related to pyrophosphate, an endogenous modulator in homeostasis of calcium, and they are clinically used for various metabolic bone disorders such as Paget’s disease, hypercalcemia of malignancy, bone metastasis and osteoporosis. The reduced targetability of some bisphosphonates in relationship to the dose increased and its hepatosplenic accumulation has been reported. It is due to high precipitability with divalent ions in the circulation in blood plasma, which may be taken up by reticuloendothelial system as foreign substances. Therefore, new drug delivery systems are needed to overcome these problems. The aim of our work is the development of a scaffold for tissue engineering based in chitosan/poly-ε-caprolactone blend which contains an adequate concentration of alendronate (a nitrogen bisphosphonate) for osteoblastic bone growth without toxic effects.Facultad de Ciencias Exactas2009info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf88-92http://sedici.unlp.edu.ar/handle/10915/76241enginfo:eu-repo/semantics/altIdentifier/hdl/11746/4384info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2026-01-14T13:37:41Zoai:sedici.unlp.edu.ar:10915/76241Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292026-01-14 13:37:42.095SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineering |
| title |
Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineering |
| spellingShingle |
Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineering Berghoff, Carla F. Ciencias Exactas Huesos biocompatible matrices, bone reconstruction, bone reconstruction |
| title_short |
Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineering |
| title_full |
Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineering |
| title_fullStr |
Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineering |
| title_full_unstemmed |
Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineering |
| title_sort |
Interaction studies of mixed matrices of chitosanpoly-ε-caprolactone and alendronate for bone tissue engineering |
| dc.creator.none.fl_str_mv |
Berghoff, Carla F. Cortizo, María Susana Cortizo, Ana María |
| author |
Berghoff, Carla F. |
| author_facet |
Berghoff, Carla F. Cortizo, María Susana Cortizo, Ana María |
| author_role |
author |
| author2 |
Cortizo, María Susana Cortizo, Ana María |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Exactas Huesos biocompatible matrices, bone reconstruction, bone reconstruction |
| topic |
Ciencias Exactas Huesos biocompatible matrices, bone reconstruction, bone reconstruction |
| dc.description.none.fl_txt_mv |
Tissue engineering actual tendencies leads to the development of biocompatible matrices with accurate physical and mechanical properties in bone reconstruction. As a regeneration of a new tissue is achieved, the scaffold is no longer needed and so it is reasonable to use biodegradable scaffolds. The rate of degradation must be in parallel with the tissue regeneration, and is very important to provide long term construct biocompatibility, because only natural tissue will remain in the body–a neo-organ. In this context one of the most common compound used is the natural polymer chitosan, whose mechanical properties can be improved by adding synthetic polymers. The great interest in this macromolecule is due to its proved biocompatibility and biodegradation properties. Matrix also requires the capacity to transport osteogenic agents which enhance bone regeneration. Bisphosphonates are a new class of synthetic compounds structurally related to pyrophosphate, an endogenous modulator in homeostasis of calcium, and they are clinically used for various metabolic bone disorders such as Paget’s disease, hypercalcemia of malignancy, bone metastasis and osteoporosis. The reduced targetability of some bisphosphonates in relationship to the dose increased and its hepatosplenic accumulation has been reported. It is due to high precipitability with divalent ions in the circulation in blood plasma, which may be taken up by reticuloendothelial system as foreign substances. Therefore, new drug delivery systems are needed to overcome these problems. The aim of our work is the development of a scaffold for tissue engineering based in chitosan/poly-ε-caprolactone blend which contains an adequate concentration of alendronate (a nitrogen bisphosphonate) for osteoblastic bone growth without toxic effects. Facultad de Ciencias Exactas |
| description |
Tissue engineering actual tendencies leads to the development of biocompatible matrices with accurate physical and mechanical properties in bone reconstruction. As a regeneration of a new tissue is achieved, the scaffold is no longer needed and so it is reasonable to use biodegradable scaffolds. The rate of degradation must be in parallel with the tissue regeneration, and is very important to provide long term construct biocompatibility, because only natural tissue will remain in the body–a neo-organ. In this context one of the most common compound used is the natural polymer chitosan, whose mechanical properties can be improved by adding synthetic polymers. The great interest in this macromolecule is due to its proved biocompatibility and biodegradation properties. Matrix also requires the capacity to transport osteogenic agents which enhance bone regeneration. Bisphosphonates are a new class of synthetic compounds structurally related to pyrophosphate, an endogenous modulator in homeostasis of calcium, and they are clinically used for various metabolic bone disorders such as Paget’s disease, hypercalcemia of malignancy, bone metastasis and osteoporosis. The reduced targetability of some bisphosphonates in relationship to the dose increased and its hepatosplenic accumulation has been reported. It is due to high precipitability with divalent ions in the circulation in blood plasma, which may be taken up by reticuloendothelial system as foreign substances. Therefore, new drug delivery systems are needed to overcome these problems. The aim of our work is the development of a scaffold for tissue engineering based in chitosan/poly-ε-caprolactone blend which contains an adequate concentration of alendronate (a nitrogen bisphosphonate) for osteoblastic bone growth without toxic effects. |
| publishDate |
2009 |
| dc.date.none.fl_str_mv |
2009 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/76241 |
| url |
http://sedici.unlp.edu.ar/handle/10915/76241 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/hdl/11746/4384 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
| dc.format.none.fl_str_mv |
application/pdf 88-92 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1854324137134129152 |
| score |
13.065482 |