High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy

Autores
Pérez, Daniel Omar; Velis, Danilo Rubén; Sacchi, Mauricio D.
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkagethresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the l1-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for l1-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain highresolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods.
Facultad de Ciencias Astronómicas y Geofísicas
Materia
Geofísica
Algorithm
Inversion
Amplitude Variation with Offset (AVO)
Least squares
Seismic attributes
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/99562

id SEDICI_4075a565e2362e40b05868eba3c880bc
oai_identifier_str oai:sedici.unlp.edu.ar:10915/99562
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategyPérez, Daniel OmarVelis, Danilo RubénSacchi, Mauricio D.GeofísicaAlgorithmInversionAmplitude Variation with Offset (AVO)Least squaresSeismic attributesA new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkagethresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the l1-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for l1-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain highresolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods.Facultad de Ciencias Astronómicas y Geofísicas2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf185-195http://sedici.unlp.edu.ar/handle/10915/99562enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/23298info:eu-repo/semantics/altIdentifier/url/http://geophysics.geoscienceworld.org/content/78/5/R185info:eu-repo/semantics/altIdentifier/url/http://library.seg.org/doi/10.1190/geo2013-0077.1info:eu-repo/semantics/altIdentifier/issn/0016-8033info:eu-repo/semantics/altIdentifier/doi/10.1190/GEO2013-0077.1info:eu-repo/semantics/altIdentifier/hdl/11336/23298info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:52:12Zoai:sedici.unlp.edu.ar:10915/99562Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:52:12.215SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy
title High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy
spellingShingle High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy
Pérez, Daniel Omar
Geofísica
Algorithm
Inversion
Amplitude Variation with Offset (AVO)
Least squares
Seismic attributes
title_short High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy
title_full High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy
title_fullStr High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy
title_full_unstemmed High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy
title_sort High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy
dc.creator.none.fl_str_mv Pérez, Daniel Omar
Velis, Danilo Rubén
Sacchi, Mauricio D.
author Pérez, Daniel Omar
author_facet Pérez, Daniel Omar
Velis, Danilo Rubén
Sacchi, Mauricio D.
author_role author
author2 Velis, Danilo Rubén
Sacchi, Mauricio D.
author2_role author
author
dc.subject.none.fl_str_mv Geofísica
Algorithm
Inversion
Amplitude Variation with Offset (AVO)
Least squares
Seismic attributes
topic Geofísica
Algorithm
Inversion
Amplitude Variation with Offset (AVO)
Least squares
Seismic attributes
dc.description.none.fl_txt_mv A new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkagethresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the l1-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for l1-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain highresolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods.
Facultad de Ciencias Astronómicas y Geofísicas
description A new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkagethresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the l1-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for l1-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain highresolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/99562
url http://sedici.unlp.edu.ar/handle/10915/99562
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/23298
info:eu-repo/semantics/altIdentifier/url/http://geophysics.geoscienceworld.org/content/78/5/R185
info:eu-repo/semantics/altIdentifier/url/http://library.seg.org/doi/10.1190/geo2013-0077.1
info:eu-repo/semantics/altIdentifier/issn/0016-8033
info:eu-repo/semantics/altIdentifier/doi/10.1190/GEO2013-0077.1
info:eu-repo/semantics/altIdentifier/hdl/11336/23298
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
185-195
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260403717931008
score 13.13397