High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy
- Autores
- Pérez, Daniel Omar; Velis, Danilo Rubén; Sacchi, Mauricio D.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkagethresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the l1-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for l1-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain highresolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Geofísica
Algorithm
Inversion
Amplitude Variation with Offset (AVO)
Least squares
Seismic attributes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/99562
Ver los metadatos del registro completo
id |
SEDICI_4075a565e2362e40b05868eba3c880bc |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/99562 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategyPérez, Daniel OmarVelis, Danilo RubénSacchi, Mauricio D.GeofísicaAlgorithmInversionAmplitude Variation with Offset (AVO)Least squaresSeismic attributesA new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkagethresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the l1-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for l1-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain highresolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods.Facultad de Ciencias Astronómicas y Geofísicas2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf185-195http://sedici.unlp.edu.ar/handle/10915/99562enginfo:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/23298info:eu-repo/semantics/altIdentifier/url/http://geophysics.geoscienceworld.org/content/78/5/R185info:eu-repo/semantics/altIdentifier/url/http://library.seg.org/doi/10.1190/geo2013-0077.1info:eu-repo/semantics/altIdentifier/issn/0016-8033info:eu-repo/semantics/altIdentifier/doi/10.1190/GEO2013-0077.1info:eu-repo/semantics/altIdentifier/hdl/11336/23298info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:52:12Zoai:sedici.unlp.edu.ar:10915/99562Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:52:12.215SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy |
title |
High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy |
spellingShingle |
High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy Pérez, Daniel Omar Geofísica Algorithm Inversion Amplitude Variation with Offset (AVO) Least squares Seismic attributes |
title_short |
High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy |
title_full |
High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy |
title_fullStr |
High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy |
title_full_unstemmed |
High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy |
title_sort |
High-resolution prestack seismic inversion using a hybrid FISTA least-squares strategy |
dc.creator.none.fl_str_mv |
Pérez, Daniel Omar Velis, Danilo Rubén Sacchi, Mauricio D. |
author |
Pérez, Daniel Omar |
author_facet |
Pérez, Daniel Omar Velis, Danilo Rubén Sacchi, Mauricio D. |
author_role |
author |
author2 |
Velis, Danilo Rubén Sacchi, Mauricio D. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Geofísica Algorithm Inversion Amplitude Variation with Offset (AVO) Least squares Seismic attributes |
topic |
Geofísica Algorithm Inversion Amplitude Variation with Offset (AVO) Least squares Seismic attributes |
dc.description.none.fl_txt_mv |
A new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkagethresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the l1-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for l1-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain highresolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods. Facultad de Ciencias Astronómicas y Geofísicas |
description |
A new inversion method to estimate high-resolution amplitude-versus-angle attributes (AVA) attributes such as intercept and gradient from prestack data is presented. The proposed technique promotes sparse-spike reflectivities that, when convolved with the source wavelet, fit the observed data. The inversion is carried out using a hybrid two-step strategy that combines fast iterative shrinkagethresholding algorithm (FISTA) and a standard least-squares (LS) inversion. FISTA, which can be viewed as an extension of the classical gradient algorithm, provides sparse solutions by minimizing the misfit between the modeled and the observed data, and the l1-norm of the solution. FISTA is used to estimate the location in time of the main reflectors. Then, LS is used to retrieve the appropriate reflectivity amplitudes that honor the data. FISTA, like other iterative solvers for l1-norm regularization, does not require matrices in explicit form, making it easy to apply, economic in computational terms, and adequate for solving large-scale problems. As a consequence, the FISTA+LS strategy represents a simple and cost-effective new procedure to solve the AVA inversion problem. Results on synthetic and field data show that the proposed hybrid method can obtain highresolution AVA attributes from noisy observations, making it an interesting alternative to conventional methods. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/99562 |
url |
http://sedici.unlp.edu.ar/handle/10915/99562 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ri.conicet.gov.ar/11336/23298 info:eu-repo/semantics/altIdentifier/url/http://geophysics.geoscienceworld.org/content/78/5/R185 info:eu-repo/semantics/altIdentifier/url/http://library.seg.org/doi/10.1190/geo2013-0077.1 info:eu-repo/semantics/altIdentifier/issn/0016-8033 info:eu-repo/semantics/altIdentifier/doi/10.1190/GEO2013-0077.1 info:eu-repo/semantics/altIdentifier/hdl/11336/23298 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 185-195 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260403717931008 |
score |
13.13397 |