Finite element analysis of the vibration problem of a plate coupled with a fluid

Autores
Durán, Ricardo Guillermo; Hervella Nieto, L.; Liberman, Elsa; Rodríguez, Rodolfo; Solomín, Jorge Eduardo
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.
Facultad de Ciencias Exactas
Materia
Matemática
Ciencias Exactas
eigenvalues
eigenvectors
vibration modes
elastic plate
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/139167

id SEDICI_3ec8e1a5a2dd149211a56aa8b5c54a90
oai_identifier_str oai:sedici.unlp.edu.ar:10915/139167
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Finite element analysis of the vibration problem of a plate coupled with a fluidDurán, Ricardo GuillermoHervella Nieto, L.Liberman, ElsaRodríguez, RodolfoSolomín, Jorge EduardoMatemáticaCiencias Exactaseigenvalueseigenvectorsvibration modeselastic plateWe consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.Facultad de Ciencias Exactas2000info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf591-616http://sedici.unlp.edu.ar/handle/10915/139167enginfo:eu-repo/semantics/altIdentifier/issn/0029-599xinfo:eu-repo/semantics/altIdentifier/issn/0945-3245info:eu-repo/semantics/altIdentifier/doi/10.1007/pl00005411info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:58Zoai:sedici.unlp.edu.ar:10915/139167Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:58.356SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Finite element analysis of the vibration problem of a plate coupled with a fluid
title Finite element analysis of the vibration problem of a plate coupled with a fluid
spellingShingle Finite element analysis of the vibration problem of a plate coupled with a fluid
Durán, Ricardo Guillermo
Matemática
Ciencias Exactas
eigenvalues
eigenvectors
vibration modes
elastic plate
title_short Finite element analysis of the vibration problem of a plate coupled with a fluid
title_full Finite element analysis of the vibration problem of a plate coupled with a fluid
title_fullStr Finite element analysis of the vibration problem of a plate coupled with a fluid
title_full_unstemmed Finite element analysis of the vibration problem of a plate coupled with a fluid
title_sort Finite element analysis of the vibration problem of a plate coupled with a fluid
dc.creator.none.fl_str_mv Durán, Ricardo Guillermo
Hervella Nieto, L.
Liberman, Elsa
Rodríguez, Rodolfo
Solomín, Jorge Eduardo
author Durán, Ricardo Guillermo
author_facet Durán, Ricardo Guillermo
Hervella Nieto, L.
Liberman, Elsa
Rodríguez, Rodolfo
Solomín, Jorge Eduardo
author_role author
author2 Hervella Nieto, L.
Liberman, Elsa
Rodríguez, Rodolfo
Solomín, Jorge Eduardo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Matemática
Ciencias Exactas
eigenvalues
eigenvectors
vibration modes
elastic plate
topic Matemática
Ciencias Exactas
eigenvalues
eigenvectors
vibration modes
elastic plate
dc.description.none.fl_txt_mv We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.
Facultad de Ciencias Exactas
description We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.
publishDate 2000
dc.date.none.fl_str_mv 2000
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/139167
url http://sedici.unlp.edu.ar/handle/10915/139167
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0029-599x
info:eu-repo/semantics/altIdentifier/issn/0945-3245
info:eu-repo/semantics/altIdentifier/doi/10.1007/pl00005411
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
591-616
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1844616199518814208
score 13.070432