Finite element analysis of the vibration problem of a plate coupled with a fluid
- Autores
- Durán, Ricardo Guillermo; Hervella Nieto, L.; Liberman, Elsa; Rodríguez, Rodolfo; Solomín, Jorge Eduardo
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.
Facultad de Ciencias Exactas - Materia
-
Matemática
Ciencias Exactas
eigenvalues
eigenvectors
vibration modes
elastic plate - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/139167
Ver los metadatos del registro completo
id |
SEDICI_3ec8e1a5a2dd149211a56aa8b5c54a90 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/139167 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Finite element analysis of the vibration problem of a plate coupled with a fluidDurán, Ricardo GuillermoHervella Nieto, L.Liberman, ElsaRodríguez, RodolfoSolomín, Jorge EduardoMatemáticaCiencias Exactaseigenvalueseigenvectorsvibration modeselastic plateWe consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method.Facultad de Ciencias Exactas2000info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf591-616http://sedici.unlp.edu.ar/handle/10915/139167enginfo:eu-repo/semantics/altIdentifier/issn/0029-599xinfo:eu-repo/semantics/altIdentifier/issn/0945-3245info:eu-repo/semantics/altIdentifier/doi/10.1007/pl00005411info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:31:58Zoai:sedici.unlp.edu.ar:10915/139167Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:31:58.356SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
spellingShingle |
Finite element analysis of the vibration problem of a plate coupled with a fluid Durán, Ricardo Guillermo Matemática Ciencias Exactas eigenvalues eigenvectors vibration modes elastic plate |
title_short |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title_full |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title_fullStr |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title_full_unstemmed |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
title_sort |
Finite element analysis of the vibration problem of a plate coupled with a fluid |
dc.creator.none.fl_str_mv |
Durán, Ricardo Guillermo Hervella Nieto, L. Liberman, Elsa Rodríguez, Rodolfo Solomín, Jorge Eduardo |
author |
Durán, Ricardo Guillermo |
author_facet |
Durán, Ricardo Guillermo Hervella Nieto, L. Liberman, Elsa Rodríguez, Rodolfo Solomín, Jorge Eduardo |
author_role |
author |
author2 |
Hervella Nieto, L. Liberman, Elsa Rodríguez, Rodolfo Solomín, Jorge Eduardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Matemática Ciencias Exactas eigenvalues eigenvectors vibration modes elastic plate |
topic |
Matemática Ciencias Exactas eigenvalues eigenvectors vibration modes elastic plate |
dc.description.none.fl_txt_mv |
We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method. Facultad de Ciencias Exactas |
description |
We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t>0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t→0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. Finally we present numerical results confirming the good performance of the method. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/139167 |
url |
http://sedici.unlp.edu.ar/handle/10915/139167 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0029-599x info:eu-repo/semantics/altIdentifier/issn/0945-3245 info:eu-repo/semantics/altIdentifier/doi/10.1007/pl00005411 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) |
dc.format.none.fl_str_mv |
application/pdf 591-616 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616199518814208 |
score |
13.070432 |