Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1
- Autores
- Romero, Gustavo Esteban; Valle, María Victoria del; Orellana, Mariana Dominga
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Context. The high-mass microquasar Cyg X-1, the best-established candidate for a stellar-mass black hole in the Galaxy, has been detected in a flaring state at very high energies (VHE), E > 200 GeV, by the Atmospheric Cherenkov Telescope MAGIC. The flare occurred at orbital phase φ = 0.91, where φ = 1 is the configuration with the black hole behind the companion high-mass star, when the absorption of gamma-ray photons by photon-photon annihilation with the stellar field is expected to be highest. Aims. We aim to set up a model for the high-energy emission and absorption in Cyg X-1 that can explain the nature of the observed gamma-ray flare. Methods. We study the gamma-ray opacity due to pair creation along the whole orbit, and for different locations of the emitter. Then we consider a possible mechanism for the production of the VHE emission. Results. We present detailed calculations of the gamma-ray opacity and infer from these calculations the distance from the black hole where the emitting region was located. We suggest that the flare was the result of a jet-clump interaction where the decay products of inelastic p - p collisions dominate the VHE outcome. Conclusions. We are able to reproduce the spectrum of Cyg X-1 during the observed flare under reasonable assumptions. The flare may be the first event of jet-cloud interaction ever detected at such high energies.
Facultad de Ciencias Astronómicas y Geofísicas - Materia
-
Ciencias Astronómicas
Radiation mechanisms: non-thermal
Stars: winds, outflows
X-rays: binaries
Gamma-rays: general - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/82537
Ver los metadatos del registro completo
id |
SEDICI_393c95007ff4b33886c315eeb79a961f |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/82537 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1Romero, Gustavo EstebanValle, María Victoria delOrellana, Mariana DomingaCiencias AstronómicasRadiation mechanisms: non-thermalStars: winds, outflowsX-rays: binariesGamma-rays: generalContext. The high-mass microquasar Cyg X-1, the best-established candidate for a stellar-mass black hole in the Galaxy, has been detected in a flaring state at very high energies (VHE), E > 200 GeV, by the Atmospheric Cherenkov Telescope MAGIC. The flare occurred at orbital phase φ = 0.91, where φ = 1 is the configuration with the black hole behind the companion high-mass star, when the absorption of gamma-ray photons by photon-photon annihilation with the stellar field is expected to be highest. Aims. We aim to set up a model for the high-energy emission and absorption in Cyg X-1 that can explain the nature of the observed gamma-ray flare. Methods. We study the gamma-ray opacity due to pair creation along the whole orbit, and for different locations of the emitter. Then we consider a possible mechanism for the production of the VHE emission. Results. We present detailed calculations of the gamma-ray opacity and infer from these calculations the distance from the black hole where the emitting region was located. We suggest that the flare was the result of a jet-clump interaction where the decay products of inelastic p - p collisions dominate the VHE outcome. Conclusions. We are able to reproduce the spectrum of Cyg X-1 during the observed flare under reasonable assumptions. The flare may be the first event of jet-cloud interaction ever detected at such high energies.Facultad de Ciencias Astronómicas y Geofísicas2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/82537enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/200913938info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:07:23Zoai:sedici.unlp.edu.ar:10915/82537Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:07:24.057SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1 |
title |
Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1 |
spellingShingle |
Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1 Romero, Gustavo Esteban Ciencias Astronómicas Radiation mechanisms: non-thermal Stars: winds, outflows X-rays: binaries Gamma-rays: general |
title_short |
Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1 |
title_full |
Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1 |
title_fullStr |
Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1 |
title_full_unstemmed |
Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1 |
title_sort |
Gamma-ray absorption and the origin of the gamma-ray flare in Cygnus X-1 |
dc.creator.none.fl_str_mv |
Romero, Gustavo Esteban Valle, María Victoria del Orellana, Mariana Dominga |
author |
Romero, Gustavo Esteban |
author_facet |
Romero, Gustavo Esteban Valle, María Victoria del Orellana, Mariana Dominga |
author_role |
author |
author2 |
Valle, María Victoria del Orellana, Mariana Dominga |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas Radiation mechanisms: non-thermal Stars: winds, outflows X-rays: binaries Gamma-rays: general |
topic |
Ciencias Astronómicas Radiation mechanisms: non-thermal Stars: winds, outflows X-rays: binaries Gamma-rays: general |
dc.description.none.fl_txt_mv |
Context. The high-mass microquasar Cyg X-1, the best-established candidate for a stellar-mass black hole in the Galaxy, has been detected in a flaring state at very high energies (VHE), E > 200 GeV, by the Atmospheric Cherenkov Telescope MAGIC. The flare occurred at orbital phase φ = 0.91, where φ = 1 is the configuration with the black hole behind the companion high-mass star, when the absorption of gamma-ray photons by photon-photon annihilation with the stellar field is expected to be highest. Aims. We aim to set up a model for the high-energy emission and absorption in Cyg X-1 that can explain the nature of the observed gamma-ray flare. Methods. We study the gamma-ray opacity due to pair creation along the whole orbit, and for different locations of the emitter. Then we consider a possible mechanism for the production of the VHE emission. Results. We present detailed calculations of the gamma-ray opacity and infer from these calculations the distance from the black hole where the emitting region was located. We suggest that the flare was the result of a jet-clump interaction where the decay products of inelastic p - p collisions dominate the VHE outcome. Conclusions. We are able to reproduce the spectrum of Cyg X-1 during the observed flare under reasonable assumptions. The flare may be the first event of jet-cloud interaction ever detected at such high energies. Facultad de Ciencias Astronómicas y Geofísicas |
description |
Context. The high-mass microquasar Cyg X-1, the best-established candidate for a stellar-mass black hole in the Galaxy, has been detected in a flaring state at very high energies (VHE), E > 200 GeV, by the Atmospheric Cherenkov Telescope MAGIC. The flare occurred at orbital phase φ = 0.91, where φ = 1 is the configuration with the black hole behind the companion high-mass star, when the absorption of gamma-ray photons by photon-photon annihilation with the stellar field is expected to be highest. Aims. We aim to set up a model for the high-energy emission and absorption in Cyg X-1 that can explain the nature of the observed gamma-ray flare. Methods. We study the gamma-ray opacity due to pair creation along the whole orbit, and for different locations of the emitter. Then we consider a possible mechanism for the production of the VHE emission. Results. We present detailed calculations of the gamma-ray opacity and infer from these calculations the distance from the black hole where the emitting region was located. We suggest that the flare was the result of a jet-clump interaction where the decay products of inelastic p - p collisions dominate the VHE outcome. Conclusions. We are able to reproduce the spectrum of Cyg X-1 during the observed flare under reasonable assumptions. The flare may be the first event of jet-cloud interaction ever detected at such high energies. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/82537 |
url |
http://sedici.unlp.edu.ar/handle/10915/82537 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0004-6361 info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361/200913938 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846064130028470272 |
score |
13.216834 |