A broadband leptonic model for gamma-ray emitting microquasars

Autores
Bosch Ramon, V.; Romero, Gustavo Esteban; Paredes,
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Observational and theoretical studies point to microquasars (MQs) as possible counterparts of a significant fraction of the unidentifiedgamma-ray sources detected so far. At present, a proper scenario to explain the emission beyond soft X-rays from these objects is not known, nor what the precise connection is between the radio and the high-energy radiation. We develop a new model where the MQ jet is dynamically dominated by cold protons and radiatively dominated by relativistic leptons. The matter content and power of the jet are both related with the accretion process. The magnetic field is assumed to be close to equipartition, although it is attached to and dominated by the jet matter. For the relativistic particles in the jet, their maximum energy depends on both the acceleration efficiency and the energy losses. The model takes into account the interaction of the relativistic jet particles with the magnetic field and all the photon and matter fields. Such interaction produces significant amounts of radiation from radio to very high energies through synchrotron, relativistic Bremsstrahlung, and inverse Compton (IC) processes. Variability of the emission produced by changes in the accretion process (e.g. via orbital eccentricity) is also expected. The effects of the gamma-ray absorption by the external photon fields on the gamma-ray spectrum have been taken into account, revealing clear spectral features that might be observed. This model is consistent to the accretion scenario, energy conservation laws, and current observational knowledge, and can provide deeper physical information of the source when tested against multiwavelength data.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto Argentino de Radioastronomía
Materia
Ciencias Astronómicas
Gamma-rays: observations
Gamma-rays: theory
Stars: winds, outflows
X-rays: binaries
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/83341

id SEDICI_a880da7c4d0b392c8286d3b22c333b82
oai_identifier_str oai:sedici.unlp.edu.ar:10915/83341
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling A broadband leptonic model for gamma-ray emitting microquasarsBosch Ramon, V.Romero, Gustavo EstebanParedes,Ciencias AstronómicasGamma-rays: observationsGamma-rays: theoryStars: winds, outflowsX-rays: binariesObservational and theoretical studies point to microquasars (MQs) as possible counterparts of a significant fraction of the unidentifiedgamma-ray sources detected so far. At present, a proper scenario to explain the emission beyond soft X-rays from these objects is not known, nor what the precise connection is between the radio and the high-energy radiation. We develop a new model where the MQ jet is dynamically dominated by cold protons and radiatively dominated by relativistic leptons. The matter content and power of the jet are both related with the accretion process. The magnetic field is assumed to be close to equipartition, although it is attached to and dominated by the jet matter. For the relativistic particles in the jet, their maximum energy depends on both the acceleration efficiency and the energy losses. The model takes into account the interaction of the relativistic jet particles with the magnetic field and all the photon and matter fields. Such interaction produces significant amounts of radiation from radio to very high energies through synchrotron, relativistic Bremsstrahlung, and inverse Compton (IC) processes. Variability of the emission produced by changes in the accretion process (e.g. via orbital eccentricity) is also expected. The effects of the gamma-ray absorption by the external photon fields on the gamma-ray spectrum have been taken into account, revealing clear spectral features that might be observed. This model is consistent to the accretion scenario, energy conservation laws, and current observational knowledge, and can provide deeper physical information of the source when tested against multiwavelength data.Facultad de Ciencias Astronómicas y GeofísicasInstituto Argentino de Radioastronomía2006-01-27info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf263-276http://sedici.unlp.edu.ar/handle/10915/83341enginfo:eu-repo/semantics/altIdentifier/issn/0004-6361info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20053633info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:07:42Zoai:sedici.unlp.edu.ar:10915/83341Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:07:42.489SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv A broadband leptonic model for gamma-ray emitting microquasars
title A broadband leptonic model for gamma-ray emitting microquasars
spellingShingle A broadband leptonic model for gamma-ray emitting microquasars
Bosch Ramon, V.
Ciencias Astronómicas
Gamma-rays: observations
Gamma-rays: theory
Stars: winds, outflows
X-rays: binaries
title_short A broadband leptonic model for gamma-ray emitting microquasars
title_full A broadband leptonic model for gamma-ray emitting microquasars
title_fullStr A broadband leptonic model for gamma-ray emitting microquasars
title_full_unstemmed A broadband leptonic model for gamma-ray emitting microquasars
title_sort A broadband leptonic model for gamma-ray emitting microquasars
dc.creator.none.fl_str_mv Bosch Ramon, V.
Romero, Gustavo Esteban
Paredes,
author Bosch Ramon, V.
author_facet Bosch Ramon, V.
Romero, Gustavo Esteban
Paredes,
author_role author
author2 Romero, Gustavo Esteban
Paredes,
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Astronómicas
Gamma-rays: observations
Gamma-rays: theory
Stars: winds, outflows
X-rays: binaries
topic Ciencias Astronómicas
Gamma-rays: observations
Gamma-rays: theory
Stars: winds, outflows
X-rays: binaries
dc.description.none.fl_txt_mv Observational and theoretical studies point to microquasars (MQs) as possible counterparts of a significant fraction of the unidentifiedgamma-ray sources detected so far. At present, a proper scenario to explain the emission beyond soft X-rays from these objects is not known, nor what the precise connection is between the radio and the high-energy radiation. We develop a new model where the MQ jet is dynamically dominated by cold protons and radiatively dominated by relativistic leptons. The matter content and power of the jet are both related with the accretion process. The magnetic field is assumed to be close to equipartition, although it is attached to and dominated by the jet matter. For the relativistic particles in the jet, their maximum energy depends on both the acceleration efficiency and the energy losses. The model takes into account the interaction of the relativistic jet particles with the magnetic field and all the photon and matter fields. Such interaction produces significant amounts of radiation from radio to very high energies through synchrotron, relativistic Bremsstrahlung, and inverse Compton (IC) processes. Variability of the emission produced by changes in the accretion process (e.g. via orbital eccentricity) is also expected. The effects of the gamma-ray absorption by the external photon fields on the gamma-ray spectrum have been taken into account, revealing clear spectral features that might be observed. This model is consistent to the accretion scenario, energy conservation laws, and current observational knowledge, and can provide deeper physical information of the source when tested against multiwavelength data.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto Argentino de Radioastronomía
description Observational and theoretical studies point to microquasars (MQs) as possible counterparts of a significant fraction of the unidentifiedgamma-ray sources detected so far. At present, a proper scenario to explain the emission beyond soft X-rays from these objects is not known, nor what the precise connection is between the radio and the high-energy radiation. We develop a new model where the MQ jet is dynamically dominated by cold protons and radiatively dominated by relativistic leptons. The matter content and power of the jet are both related with the accretion process. The magnetic field is assumed to be close to equipartition, although it is attached to and dominated by the jet matter. For the relativistic particles in the jet, their maximum energy depends on both the acceleration efficiency and the energy losses. The model takes into account the interaction of the relativistic jet particles with the magnetic field and all the photon and matter fields. Such interaction produces significant amounts of radiation from radio to very high energies through synchrotron, relativistic Bremsstrahlung, and inverse Compton (IC) processes. Variability of the emission produced by changes in the accretion process (e.g. via orbital eccentricity) is also expected. The effects of the gamma-ray absorption by the external photon fields on the gamma-ray spectrum have been taken into account, revealing clear spectral features that might be observed. This model is consistent to the accretion scenario, energy conservation laws, and current observational knowledge, and can provide deeper physical information of the source when tested against multiwavelength data.
publishDate 2006
dc.date.none.fl_str_mv 2006-01-27
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/83341
url http://sedici.unlp.edu.ar/handle/10915/83341
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0004-6361
info:eu-repo/semantics/altIdentifier/doi/10.1051/0004-6361:20053633
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
263-276
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846064133074583552
score 12.891075