Analiticity in fourth-order wave equations

Autores
Bollini, Carlos Guido; Giambiagi, Juan José
Año de publicación
1987
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we present, through a familiar example (δ-function potential in one dimension), the analytic properties of Jost functions associated with fourth-order equations. It is shown how to construct the Jost functions and the two discontinuity matrices associated with the line of singularities. The latter divide the complexk-plane in eight regions of analiticity. One of these matrices is related to the asymptotic behaviour of the scattering state. The other is not. Both are necessary to solve the inverse problem. Besides the usual poles related to bound states there are also other poles associated with total reflexion.
Facultad de Ciencias Exactas
Materia
Física
Field theory
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/144989

id SEDICI_3863f550daf423810ed5d3f235df95d8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/144989
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Analiticity in fourth-order wave equationsBollini, Carlos GuidoGiambiagi, Juan JoséFísicaField theoryIn this paper we present, through a familiar example (δ-function potential in one dimension), the analytic properties of Jost functions associated with fourth-order equations. It is shown how to construct the Jost functions and the two discontinuity matrices associated with the line of singularities. The latter divide the complexk-plane in eight regions of analiticity. One of these matrices is related to the asymptotic behaviour of the scattering state. The other is not. Both are necessary to solve the inverse problem. Besides the usual poles related to bound states there are also other poles associated with total reflexion.Facultad de Ciencias Exactas1987info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf151-168http://sedici.unlp.edu.ar/handle/10915/144989enginfo:eu-repo/semantics/altIdentifier/issn/0369-3546info:eu-repo/semantics/altIdentifier/issn/1826-9869info:eu-repo/semantics/altIdentifier/doi/10.1007/bf02902771info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T17:13:30Zoai:sedici.unlp.edu.ar:10915/144989Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 17:13:31.114SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Analiticity in fourth-order wave equations
title Analiticity in fourth-order wave equations
spellingShingle Analiticity in fourth-order wave equations
Bollini, Carlos Guido
Física
Field theory
title_short Analiticity in fourth-order wave equations
title_full Analiticity in fourth-order wave equations
title_fullStr Analiticity in fourth-order wave equations
title_full_unstemmed Analiticity in fourth-order wave equations
title_sort Analiticity in fourth-order wave equations
dc.creator.none.fl_str_mv Bollini, Carlos Guido
Giambiagi, Juan José
author Bollini, Carlos Guido
author_facet Bollini, Carlos Guido
Giambiagi, Juan José
author_role author
author2 Giambiagi, Juan José
author2_role author
dc.subject.none.fl_str_mv Física
Field theory
topic Física
Field theory
dc.description.none.fl_txt_mv In this paper we present, through a familiar example (δ-function potential in one dimension), the analytic properties of Jost functions associated with fourth-order equations. It is shown how to construct the Jost functions and the two discontinuity matrices associated with the line of singularities. The latter divide the complexk-plane in eight regions of analiticity. One of these matrices is related to the asymptotic behaviour of the scattering state. The other is not. Both are necessary to solve the inverse problem. Besides the usual poles related to bound states there are also other poles associated with total reflexion.
Facultad de Ciencias Exactas
description In this paper we present, through a familiar example (δ-function potential in one dimension), the analytic properties of Jost functions associated with fourth-order equations. It is shown how to construct the Jost functions and the two discontinuity matrices associated with the line of singularities. The latter divide the complexk-plane in eight regions of analiticity. One of these matrices is related to the asymptotic behaviour of the scattering state. The other is not. Both are necessary to solve the inverse problem. Besides the usual poles related to bound states there are also other poles associated with total reflexion.
publishDate 1987
dc.date.none.fl_str_mv 1987
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/144989
url http://sedici.unlp.edu.ar/handle/10915/144989
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0369-3546
info:eu-repo/semantics/altIdentifier/issn/1826-9869
info:eu-repo/semantics/altIdentifier/doi/10.1007/bf02902771
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
151-168
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846783505842831360
score 12.982451