A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms
- Autores
- Minetti, Gabriela F.; Salto, Carolina; Alfonso, Hugo; Gallard, Raúl Hector
- Año de publicación
- 1999
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Selection mechanisms favour reproduction of better individuals imposing a direction on the search process. According to this it is expected that the effective number of offspring of an individual in the next generation would always agree with the algorithmic sampling frequencies. This does not happens due to sampling errors. Stochastic universal sampling is a method that tries to remedy this problem. This presentation discusses performance results on evolutionary algorithms optimizing a set of highly multimodal functions and a hard unimodal function, under Proportional selection and stochastic universal sampling. Contrasting results are shown.
Eje: Redes y sistemas inteligentes
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
stochastic universal sampling
proportional selection
genetic algorithms
ARTIFICIAL INTELLIGENCE
Algorithms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/22220
Ver los metadatos del registro completo
id |
SEDICI_0747788e41792bc10d03ac765b15bb86 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/22220 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithmsMinetti, Gabriela F.Salto, CarolinaAlfonso, HugoGallard, Raúl HectorCiencias Informáticasstochastic universal samplingproportional selectiongenetic algorithmsARTIFICIAL INTELLIGENCEAlgorithmsSelection mechanisms favour reproduction of better individuals imposing a direction on the search process. According to this it is expected that the effective number of offspring of an individual in the next generation would always agree with the algorithmic sampling frequencies. This does not happens due to sampling errors. Stochastic universal sampling is a method that tries to remedy this problem. This presentation discusses performance results on evolutionary algorithms optimizing a set of highly multimodal functions and a hard unimodal function, under Proportional selection and stochastic universal sampling. Contrasting results are shown.Eje: Redes y sistemas inteligentesRed de Universidades con Carreras en Informática (RedUNCI)1999-05info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/22220enginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T10:47:37Zoai:sedici.unlp.edu.ar:10915/22220Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 10:47:37.398SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms |
title |
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms |
spellingShingle |
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms Minetti, Gabriela F. Ciencias Informáticas stochastic universal sampling proportional selection genetic algorithms ARTIFICIAL INTELLIGENCE Algorithms |
title_short |
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms |
title_full |
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms |
title_fullStr |
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms |
title_full_unstemmed |
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms |
title_sort |
A study of performance of stochastic universal sampling versus proportional selection on genetic algorithms |
dc.creator.none.fl_str_mv |
Minetti, Gabriela F. Salto, Carolina Alfonso, Hugo Gallard, Raúl Hector |
author |
Minetti, Gabriela F. |
author_facet |
Minetti, Gabriela F. Salto, Carolina Alfonso, Hugo Gallard, Raúl Hector |
author_role |
author |
author2 |
Salto, Carolina Alfonso, Hugo Gallard, Raúl Hector |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas stochastic universal sampling proportional selection genetic algorithms ARTIFICIAL INTELLIGENCE Algorithms |
topic |
Ciencias Informáticas stochastic universal sampling proportional selection genetic algorithms ARTIFICIAL INTELLIGENCE Algorithms |
dc.description.none.fl_txt_mv |
Selection mechanisms favour reproduction of better individuals imposing a direction on the search process. According to this it is expected that the effective number of offspring of an individual in the next generation would always agree with the algorithmic sampling frequencies. This does not happens due to sampling errors. Stochastic universal sampling is a method that tries to remedy this problem. This presentation discusses performance results on evolutionary algorithms optimizing a set of highly multimodal functions and a hard unimodal function, under Proportional selection and stochastic universal sampling. Contrasting results are shown. Eje: Redes y sistemas inteligentes Red de Universidades con Carreras en Informática (RedUNCI) |
description |
Selection mechanisms favour reproduction of better individuals imposing a direction on the search process. According to this it is expected that the effective number of offspring of an individual in the next generation would always agree with the algorithmic sampling frequencies. This does not happens due to sampling errors. Stochastic universal sampling is a method that tries to remedy this problem. This presentation discusses performance results on evolutionary algorithms optimizing a set of highly multimodal functions and a hard unimodal function, under Proportional selection and stochastic universal sampling. Contrasting results are shown. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/22220 |
url |
http://sedici.unlp.edu.ar/handle/10915/22220 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846063901901324288 |
score |
13.22299 |