Heisenberg-Fisher thermal uncertainty measure
- Autores
- Pennini, Flavia; Plastino, Ángel Luis
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We establish a connection among (i) the so-called Wehrl entropy, (ii) Fisher's information measure I(beta), and (iii) the canonical ensemble entropy for the one-dimensional quantum harmonic oscillator (HO). We show that the contribution of the excited HO spectrum to the mean thermal energy is given by Iβ, while the pertinent canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one. Our findings should be of interest in view of the fact that it has been shown that the Legendre transform structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-Shannon entropy by Fisher's information measure [Phys. Rev. E 60, 48 (1999)]]. Fisher-related uncertainty relations are also advanced, together with a Fisher version of thermodynamics' third law.
Instituto de Física La Plata - Materia
-
Física
Joint entropy
Entropy in thermodynamics and information theory
Wehrl entropy
H-theorem
Canonical ensemble
Mathematics
Mathematical physics
Joint quantum entropy
Maximum entropy thermodynamics
Partition function (statistical mechanics)
Quantum mechanics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/126315
Ver los metadatos del registro completo
id |
SEDICI_343621812bdfbc3171b91708aace39b5 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/126315 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Heisenberg-Fisher thermal uncertainty measurePennini, FlaviaPlastino, Ángel LuisFísicaJoint entropyEntropy in thermodynamics and information theoryWehrl entropyH-theoremCanonical ensembleMathematicsMathematical physicsJoint quantum entropyMaximum entropy thermodynamicsPartition function (statistical mechanics)Quantum mechanicsWe establish a connection among (i) the so-called Wehrl entropy, (ii) Fisher's information measure I(beta), and (iii) the canonical ensemble entropy for the one-dimensional quantum harmonic oscillator (HO). We show that the contribution of the excited HO spectrum to the mean thermal energy is given by Iβ, while the pertinent canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one. Our findings should be of interest in view of the fact that it has been shown that the Legendre transform structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-Shannon entropy by Fisher's information measure [Phys. Rev. E 60, 48 (1999)]]. Fisher-related uncertainty relations are also advanced, together with a Fisher version of thermodynamics' third law.Instituto de Física La Plata2004-05-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126315enginfo:eu-repo/semantics/altIdentifier/issn/1539-3755info:eu-repo/semantics/altIdentifier/issn/1550-2376info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0312680info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.69.057101info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:23Zoai:sedici.unlp.edu.ar:10915/126315Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:23.764SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Heisenberg-Fisher thermal uncertainty measure |
title |
Heisenberg-Fisher thermal uncertainty measure |
spellingShingle |
Heisenberg-Fisher thermal uncertainty measure Pennini, Flavia Física Joint entropy Entropy in thermodynamics and information theory Wehrl entropy H-theorem Canonical ensemble Mathematics Mathematical physics Joint quantum entropy Maximum entropy thermodynamics Partition function (statistical mechanics) Quantum mechanics |
title_short |
Heisenberg-Fisher thermal uncertainty measure |
title_full |
Heisenberg-Fisher thermal uncertainty measure |
title_fullStr |
Heisenberg-Fisher thermal uncertainty measure |
title_full_unstemmed |
Heisenberg-Fisher thermal uncertainty measure |
title_sort |
Heisenberg-Fisher thermal uncertainty measure |
dc.creator.none.fl_str_mv |
Pennini, Flavia Plastino, Ángel Luis |
author |
Pennini, Flavia |
author_facet |
Pennini, Flavia Plastino, Ángel Luis |
author_role |
author |
author2 |
Plastino, Ángel Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Física Joint entropy Entropy in thermodynamics and information theory Wehrl entropy H-theorem Canonical ensemble Mathematics Mathematical physics Joint quantum entropy Maximum entropy thermodynamics Partition function (statistical mechanics) Quantum mechanics |
topic |
Física Joint entropy Entropy in thermodynamics and information theory Wehrl entropy H-theorem Canonical ensemble Mathematics Mathematical physics Joint quantum entropy Maximum entropy thermodynamics Partition function (statistical mechanics) Quantum mechanics |
dc.description.none.fl_txt_mv |
We establish a connection among (i) the so-called Wehrl entropy, (ii) Fisher's information measure I(beta), and (iii) the canonical ensemble entropy for the one-dimensional quantum harmonic oscillator (HO). We show that the contribution of the excited HO spectrum to the mean thermal energy is given by Iβ, while the pertinent canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one. Our findings should be of interest in view of the fact that it has been shown that the Legendre transform structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-Shannon entropy by Fisher's information measure [Phys. Rev. E 60, 48 (1999)]]. Fisher-related uncertainty relations are also advanced, together with a Fisher version of thermodynamics' third law. Instituto de Física La Plata |
description |
We establish a connection among (i) the so-called Wehrl entropy, (ii) Fisher's information measure I(beta), and (iii) the canonical ensemble entropy for the one-dimensional quantum harmonic oscillator (HO). We show that the contribution of the excited HO spectrum to the mean thermal energy is given by Iβ, while the pertinent canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one. Our findings should be of interest in view of the fact that it has been shown that the Legendre transform structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-Shannon entropy by Fisher's information measure [Phys. Rev. E 60, 48 (1999)]]. Fisher-related uncertainty relations are also advanced, together with a Fisher version of thermodynamics' third law. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-05-21 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/126315 |
url |
http://sedici.unlp.edu.ar/handle/10915/126315 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/1539-3755 info:eu-repo/semantics/altIdentifier/issn/1550-2376 info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0312680 info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.69.057101 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260521913417728 |
score |
13.13397 |