Heisenberg-Fisher thermal uncertainty measure

Autores
Pennini, Flavia; Plastino, Ángel Luis
Año de publicación
2004
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We establish a connection among (i) the so-called Wehrl entropy, (ii) Fisher's information measure I(beta), and (iii) the canonical ensemble entropy for the one-dimensional quantum harmonic oscillator (HO). We show that the contribution of the excited HO spectrum to the mean thermal energy is given by Iβ, while the pertinent canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one. Our findings should be of interest in view of the fact that it has been shown that the Legendre transform structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-Shannon entropy by Fisher's information measure [Phys. Rev. E 60, 48 (1999)]]. Fisher-related uncertainty relations are also advanced, together with a Fisher version of thermodynamics' third law.
Instituto de Física La Plata
Materia
Física
Joint entropy
Entropy in thermodynamics and information theory
Wehrl entropy
H-theorem
Canonical ensemble
Mathematics
Mathematical physics
Joint quantum entropy
Maximum entropy thermodynamics
Partition function (statistical mechanics)
Quantum mechanics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/126315

id SEDICI_343621812bdfbc3171b91708aace39b5
oai_identifier_str oai:sedici.unlp.edu.ar:10915/126315
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Heisenberg-Fisher thermal uncertainty measurePennini, FlaviaPlastino, Ángel LuisFísicaJoint entropyEntropy in thermodynamics and information theoryWehrl entropyH-theoremCanonical ensembleMathematicsMathematical physicsJoint quantum entropyMaximum entropy thermodynamicsPartition function (statistical mechanics)Quantum mechanicsWe establish a connection among (i) the so-called Wehrl entropy, (ii) Fisher's information measure I(beta), and (iii) the canonical ensemble entropy for the one-dimensional quantum harmonic oscillator (HO). We show that the contribution of the excited HO spectrum to the mean thermal energy is given by Iβ, while the pertinent canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one. Our findings should be of interest in view of the fact that it has been shown that the Legendre transform structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-Shannon entropy by Fisher's information measure [Phys. Rev. E 60, 48 (1999)]]. Fisher-related uncertainty relations are also advanced, together with a Fisher version of thermodynamics' third law.Instituto de Física La Plata2004-05-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/126315enginfo:eu-repo/semantics/altIdentifier/issn/1539-3755info:eu-repo/semantics/altIdentifier/issn/1550-2376info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0312680info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.69.057101info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:02:23Zoai:sedici.unlp.edu.ar:10915/126315Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:02:23.764SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Heisenberg-Fisher thermal uncertainty measure
title Heisenberg-Fisher thermal uncertainty measure
spellingShingle Heisenberg-Fisher thermal uncertainty measure
Pennini, Flavia
Física
Joint entropy
Entropy in thermodynamics and information theory
Wehrl entropy
H-theorem
Canonical ensemble
Mathematics
Mathematical physics
Joint quantum entropy
Maximum entropy thermodynamics
Partition function (statistical mechanics)
Quantum mechanics
title_short Heisenberg-Fisher thermal uncertainty measure
title_full Heisenberg-Fisher thermal uncertainty measure
title_fullStr Heisenberg-Fisher thermal uncertainty measure
title_full_unstemmed Heisenberg-Fisher thermal uncertainty measure
title_sort Heisenberg-Fisher thermal uncertainty measure
dc.creator.none.fl_str_mv Pennini, Flavia
Plastino, Ángel Luis
author Pennini, Flavia
author_facet Pennini, Flavia
Plastino, Ángel Luis
author_role author
author2 Plastino, Ángel Luis
author2_role author
dc.subject.none.fl_str_mv Física
Joint entropy
Entropy in thermodynamics and information theory
Wehrl entropy
H-theorem
Canonical ensemble
Mathematics
Mathematical physics
Joint quantum entropy
Maximum entropy thermodynamics
Partition function (statistical mechanics)
Quantum mechanics
topic Física
Joint entropy
Entropy in thermodynamics and information theory
Wehrl entropy
H-theorem
Canonical ensemble
Mathematics
Mathematical physics
Joint quantum entropy
Maximum entropy thermodynamics
Partition function (statistical mechanics)
Quantum mechanics
dc.description.none.fl_txt_mv We establish a connection among (i) the so-called Wehrl entropy, (ii) Fisher's information measure I(beta), and (iii) the canonical ensemble entropy for the one-dimensional quantum harmonic oscillator (HO). We show that the contribution of the excited HO spectrum to the mean thermal energy is given by Iβ, while the pertinent canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one. Our findings should be of interest in view of the fact that it has been shown that the Legendre transform structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-Shannon entropy by Fisher's information measure [Phys. Rev. E 60, 48 (1999)]]. Fisher-related uncertainty relations are also advanced, together with a Fisher version of thermodynamics' third law.
Instituto de Física La Plata
description We establish a connection among (i) the so-called Wehrl entropy, (ii) Fisher's information measure I(beta), and (iii) the canonical ensemble entropy for the one-dimensional quantum harmonic oscillator (HO). We show that the contribution of the excited HO spectrum to the mean thermal energy is given by Iβ, while the pertinent canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one. Our findings should be of interest in view of the fact that it has been shown that the Legendre transform structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-Shannon entropy by Fisher's information measure [Phys. Rev. E 60, 48 (1999)]]. Fisher-related uncertainty relations are also advanced, together with a Fisher version of thermodynamics' third law.
publishDate 2004
dc.date.none.fl_str_mv 2004-05-21
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/126315
url http://sedici.unlp.edu.ar/handle/10915/126315
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/1539-3755
info:eu-repo/semantics/altIdentifier/issn/1550-2376
info:eu-repo/semantics/altIdentifier/arxiv/cond-mat/0312680
info:eu-repo/semantics/altIdentifier/doi/10.1103/physreve.69.057101
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260521913417728
score 13.13397