Comparison of Feature Extraction Methods and Predictors for Income Inference
- Autores
- Fixman, Martín; Minnoni, Martín; Sarraute, Carlos
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Abstract—Patterns of mobile phone communications, coupled with the information of the social network graph and financial behavior, allow us to make inferences of users’ socio-economic attributes such as their income level. We present here several methods to extract features from mobile phone usage (calls and messages), and compare different combinations of supervised machine learning techniques and sets of features used as input for the inference of users’ income. Our experimental results show that the Bayesian method based on the communication graph outperforms standard machine learning algorithms using nodebased features.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
Teléfono Celular
aprendizaje automático
método bayesiano - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/63174
Ver los metadatos del registro completo
id |
SEDICI_32726ced3ba451881cd47ab1942b53c4 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/63174 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Comparison of Feature Extraction Methods and Predictors for Income InferenceFixman, MartínMinnoni, MartínSarraute, CarlosCiencias InformáticasTeléfono Celularaprendizaje automáticométodo bayesianoAbstract—Patterns of mobile phone communications, coupled with the information of the social network graph and financial behavior, allow us to make inferences of users’ socio-economic attributes such as their income level. We present here several methods to extract features from mobile phone usage (calls and messages), and compare different combinations of supervised machine learning techniques and sets of features used as input for the inference of users’ income. Our experimental results show that the Bayesian method based on the communication graph outperforms standard machine learning algorithms using nodebased features.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2017-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf20-22http://sedici.unlp.edu.ar/handle/10915/63174enginfo:eu-repo/semantics/altIdentifier/url/http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/AGRANDA/AGRANDA-06.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7569info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:40:52Zoai:sedici.unlp.edu.ar:10915/63174Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:40:53.031SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
title |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
spellingShingle |
Comparison of Feature Extraction Methods and Predictors for Income Inference Fixman, Martín Ciencias Informáticas Teléfono Celular aprendizaje automático método bayesiano |
title_short |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
title_full |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
title_fullStr |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
title_full_unstemmed |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
title_sort |
Comparison of Feature Extraction Methods and Predictors for Income Inference |
dc.creator.none.fl_str_mv |
Fixman, Martín Minnoni, Martín Sarraute, Carlos |
author |
Fixman, Martín |
author_facet |
Fixman, Martín Minnoni, Martín Sarraute, Carlos |
author_role |
author |
author2 |
Minnoni, Martín Sarraute, Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Teléfono Celular aprendizaje automático método bayesiano |
topic |
Ciencias Informáticas Teléfono Celular aprendizaje automático método bayesiano |
dc.description.none.fl_txt_mv |
Abstract—Patterns of mobile phone communications, coupled with the information of the social network graph and financial behavior, allow us to make inferences of users’ socio-economic attributes such as their income level. We present here several methods to extract features from mobile phone usage (calls and messages), and compare different combinations of supervised machine learning techniques and sets of features used as input for the inference of users’ income. Our experimental results show that the Bayesian method based on the communication graph outperforms standard machine learning algorithms using nodebased features. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
description |
Abstract—Patterns of mobile phone communications, coupled with the information of the social network graph and financial behavior, allow us to make inferences of users’ socio-economic attributes such as their income level. We present here several methods to extract features from mobile phone usage (calls and messages), and compare different combinations of supervised machine learning techniques and sets of features used as input for the inference of users’ income. Our experimental results show that the Bayesian method based on the communication graph outperforms standard machine learning algorithms using nodebased features. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/63174 |
url |
http://sedici.unlp.edu.ar/handle/10915/63174 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.clei2017-46jaiio.sadio.org.ar/sites/default/files/Mem/AGRANDA/AGRANDA-06.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7569 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 20-22 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260274615156736 |
score |
13.13397 |