Production scheduling optimization for power-intensive processes with time-sensitive electricity prices
- Autores
- Basán, Natalia; Méndez, Carlos A.
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Continuous power-intensive processes in air separation plant can take advantage of optimal production planning to reduce the consumption of electricity. In this work a solution approach is developed based on a discrete-time scheduling formulation that allows modeling and optimizing operating decisions either in a fixed or a rolling horizon scheme. The main goal of this contribution is to find an optimal hourly schedule for next week that minimizes total energy consumption cost while satisfying all operational constraints. The MILP model is tested on real-world electricity price and demand input data. The results show optimal solutions for the proposed methodology with a modest computational effort considering a one-hour time grid and one-week time horizon.
Sociedad Argentina de Informática e Investigación Operativa (SADIO) - Materia
-
Ciencias Informáticas
Scheduling
continuous power-intensive processes
air separation plant
energy consumption cost - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/58392
Ver los metadatos del registro completo
id |
SEDICI_31c13e198d4aace1049c8b433da874f8 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/58392 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Production scheduling optimization for power-intensive processes with time-sensitive electricity pricesBasán, NataliaMéndez, Carlos A.Ciencias InformáticasSchedulingcontinuous power-intensive processesair separation plantenergy consumption costContinuous power-intensive processes in air separation plant can take advantage of optimal production planning to reduce the consumption of electricity. In this work a solution approach is developed based on a discrete-time scheduling formulation that allows modeling and optimizing operating decisions either in a fixed or a rolling horizon scheme. The main goal of this contribution is to find an optimal hourly schedule for next week that minimizes total energy consumption cost while satisfying all operational constraints. The MILP model is tested on real-world electricity price and demand input data. The results show optimal solutions for the proposed methodology with a modest computational effort considering a one-hour time grid and one-week time horizon.Sociedad Argentina de Informática e Investigación Operativa (SADIO)2016-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf61-70http://sedici.unlp.edu.ar/handle/10915/58392enginfo:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/1577-4988-1-DR_0.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7542info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:50:06Zoai:sedici.unlp.edu.ar:10915/58392Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:50:06.774SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Production scheduling optimization for power-intensive processes with time-sensitive electricity prices |
title |
Production scheduling optimization for power-intensive processes with time-sensitive electricity prices |
spellingShingle |
Production scheduling optimization for power-intensive processes with time-sensitive electricity prices Basán, Natalia Ciencias Informáticas Scheduling continuous power-intensive processes air separation plant energy consumption cost |
title_short |
Production scheduling optimization for power-intensive processes with time-sensitive electricity prices |
title_full |
Production scheduling optimization for power-intensive processes with time-sensitive electricity prices |
title_fullStr |
Production scheduling optimization for power-intensive processes with time-sensitive electricity prices |
title_full_unstemmed |
Production scheduling optimization for power-intensive processes with time-sensitive electricity prices |
title_sort |
Production scheduling optimization for power-intensive processes with time-sensitive electricity prices |
dc.creator.none.fl_str_mv |
Basán, Natalia Méndez, Carlos A. |
author |
Basán, Natalia |
author_facet |
Basán, Natalia Méndez, Carlos A. |
author_role |
author |
author2 |
Méndez, Carlos A. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Scheduling continuous power-intensive processes air separation plant energy consumption cost |
topic |
Ciencias Informáticas Scheduling continuous power-intensive processes air separation plant energy consumption cost |
dc.description.none.fl_txt_mv |
Continuous power-intensive processes in air separation plant can take advantage of optimal production planning to reduce the consumption of electricity. In this work a solution approach is developed based on a discrete-time scheduling formulation that allows modeling and optimizing operating decisions either in a fixed or a rolling horizon scheme. The main goal of this contribution is to find an optimal hourly schedule for next week that minimizes total energy consumption cost while satisfying all operational constraints. The MILP model is tested on real-world electricity price and demand input data. The results show optimal solutions for the proposed methodology with a modest computational effort considering a one-hour time grid and one-week time horizon. Sociedad Argentina de Informática e Investigación Operativa (SADIO) |
description |
Continuous power-intensive processes in air separation plant can take advantage of optimal production planning to reduce the consumption of electricity. In this work a solution approach is developed based on a discrete-time scheduling formulation that allows modeling and optimizing operating decisions either in a fixed or a rolling horizon scheme. The main goal of this contribution is to find an optimal hourly schedule for next week that minimizes total energy consumption cost while satisfying all operational constraints. The MILP model is tested on real-world electricity price and demand input data. The results show optimal solutions for the proposed methodology with a modest computational effort considering a one-hour time grid and one-week time horizon. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/58392 |
url |
http://sedici.unlp.edu.ar/handle/10915/58392 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://45jaiio.sadio.org.ar/sites/default/files/1577-4988-1-DR_0.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7542 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf 61-70 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532282478985216 |
score |
13.146683 |