Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices
- Autores
- Basán, Natalia Paola; Grossmann, Ignacio E.; Gopalakrishnan, Ajit; Lotero, Irene; Mendez, Carlos Alberto
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work, a mixed-integer linear programming (MILP) model is presented based on a discrete-time scheduling formulation that allows modeling and optimizing operational decisions for processes working under time-sensitive energy prices. The main goal is to find an optimal production schedule, over a given time horizon, that satisfies product demand while minimizing total energy cost. This novel formulation, based on a new concept to model the transitions between alternative operating modes, is very efficient and robust. To illustrate the new capabilities of the model, a comprehensive comparison is performed with a previous alternative model. The model is also used to efficiently solve a real-world industrial case study. The obtained results show optimal solutions for the proposed methodology with modest computational effort.
Fil: Basán, Natalia Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Grossmann, Ignacio E.. University of Carnegie Mellon; Estados Unidos
Fil: Gopalakrishnan, Ajit. Air Liquide;
Fil: Lotero, Irene. Air Liquide;
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina - Materia
-
Scheduling
MILP model
continuous power-intensive processes
energy consumption cost - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/86918
Ver los metadatos del registro completo
id |
CONICETDig_05bd25b66999a6b1f37da7666b1b4961 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/86918 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity PricesBasán, Natalia PaolaGrossmann, Ignacio E.Gopalakrishnan, AjitLotero, IreneMendez, Carlos AlbertoSchedulingMILP modelcontinuous power-intensive processesenergy consumption costhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2In this work, a mixed-integer linear programming (MILP) model is presented based on a discrete-time scheduling formulation that allows modeling and optimizing operational decisions for processes working under time-sensitive energy prices. The main goal is to find an optimal production schedule, over a given time horizon, that satisfies product demand while minimizing total energy cost. This novel formulation, based on a new concept to model the transitions between alternative operating modes, is very efficient and robust. To illustrate the new capabilities of the model, a comprehensive comparison is performed with a previous alternative model. The model is also used to efficiently solve a real-world industrial case study. The obtained results show optimal solutions for the proposed methodology with modest computational effort.Fil: Basán, Natalia Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Grossmann, Ignacio E.. University of Carnegie Mellon; Estados UnidosFil: Gopalakrishnan, Ajit. Air Liquide;Fil: Lotero, Irene. Air Liquide;Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAmerican Chemical Society2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/86918Basán, Natalia Paola; Grossmann, Ignacio E.; Gopalakrishnan, Ajit; Lotero, Irene; Mendez, Carlos Alberto; Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices; American Chemical Society; Industrial & Engineering Chemical Research; 57; 5; 1-2018; 1581-15920888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.iecr.7b04435info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.7b04435info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:29Zoai:ri.conicet.gov.ar:11336/86918instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:29.587CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices |
title |
Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices |
spellingShingle |
Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices Basán, Natalia Paola Scheduling MILP model continuous power-intensive processes energy consumption cost |
title_short |
Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices |
title_full |
Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices |
title_fullStr |
Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices |
title_full_unstemmed |
Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices |
title_sort |
Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices |
dc.creator.none.fl_str_mv |
Basán, Natalia Paola Grossmann, Ignacio E. Gopalakrishnan, Ajit Lotero, Irene Mendez, Carlos Alberto |
author |
Basán, Natalia Paola |
author_facet |
Basán, Natalia Paola Grossmann, Ignacio E. Gopalakrishnan, Ajit Lotero, Irene Mendez, Carlos Alberto |
author_role |
author |
author2 |
Grossmann, Ignacio E. Gopalakrishnan, Ajit Lotero, Irene Mendez, Carlos Alberto |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Scheduling MILP model continuous power-intensive processes energy consumption cost |
topic |
Scheduling MILP model continuous power-intensive processes energy consumption cost |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work, a mixed-integer linear programming (MILP) model is presented based on a discrete-time scheduling formulation that allows modeling and optimizing operational decisions for processes working under time-sensitive energy prices. The main goal is to find an optimal production schedule, over a given time horizon, that satisfies product demand while minimizing total energy cost. This novel formulation, based on a new concept to model the transitions between alternative operating modes, is very efficient and robust. To illustrate the new capabilities of the model, a comprehensive comparison is performed with a previous alternative model. The model is also used to efficiently solve a real-world industrial case study. The obtained results show optimal solutions for the proposed methodology with modest computational effort. Fil: Basán, Natalia Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Grossmann, Ignacio E.. University of Carnegie Mellon; Estados Unidos Fil: Gopalakrishnan, Ajit. Air Liquide; Fil: Lotero, Irene. Air Liquide; Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina |
description |
In this work, a mixed-integer linear programming (MILP) model is presented based on a discrete-time scheduling formulation that allows modeling and optimizing operational decisions for processes working under time-sensitive energy prices. The main goal is to find an optimal production schedule, over a given time horizon, that satisfies product demand while minimizing total energy cost. This novel formulation, based on a new concept to model the transitions between alternative operating modes, is very efficient and robust. To illustrate the new capabilities of the model, a comprehensive comparison is performed with a previous alternative model. The model is also used to efficiently solve a real-world industrial case study. The obtained results show optimal solutions for the proposed methodology with modest computational effort. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/86918 Basán, Natalia Paola; Grossmann, Ignacio E.; Gopalakrishnan, Ajit; Lotero, Irene; Mendez, Carlos Alberto; Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices; American Chemical Society; Industrial & Engineering Chemical Research; 57; 5; 1-2018; 1581-1592 0888-5885 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/86918 |
identifier_str_mv |
Basán, Natalia Paola; Grossmann, Ignacio E.; Gopalakrishnan, Ajit; Lotero, Irene; Mendez, Carlos Alberto; Novel MILP Scheduling Model for Power-Intensive Processes under Time-Sensitive Electricity Prices; American Chemical Society; Industrial & Engineering Chemical Research; 57; 5; 1-2018; 1581-1592 0888-5885 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.iecr.7b04435 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.iecr.7b04435 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269032600829952 |
score |
13.13397 |