An automatic graph layout procedure to visualize correlated data
- Autores
- Moscato, Pablo; Inostroza-Ponta, Mario; Berretta, Regina; Mendes, Alexandre
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available. We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation. The methodology is presented using as testbed a time series dataset of the Standard & Poor’s 100, one the leading stock market indicators in the United States. A weighted graph is created with the stocks repre- sented by the nodes and the edges’ weights are related to the correlation between the stocks’ time series. A heuristic for clustering is then pro- posed; it is based on the graph partition into disconnected subgraphs allowing the identification of clusters of highly-correlated stocks. The final layout corresponds well with the perceived market notion of the different industrial sectors. We compare the output of this procedure with a traditional dendogram approach of hierarchical clustering
IFIP International Conference on Artificial Intelligence in Theory and Practice - Knowledge Acquisition and Data Mining
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Quadratic Assignment Problem (QAP)
hierarchical clustering
Similarity measures
Heuristic methods - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23890
Ver los metadatos del registro completo
id |
SEDICI_30dc2d6fb753be533b6d2082dc5085c2 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23890 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
An automatic graph layout procedure to visualize correlated dataMoscato, PabloInostroza-Ponta, MarioBerretta, ReginaMendes, AlexandreCiencias InformáticasQuadratic Assignment Problem (QAP)hierarchical clusteringSimilarity measuresHeuristic methodsThis paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available. We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation. The methodology is presented using as testbed a time series dataset of the Standard & Poor’s 100, one the leading stock market indicators in the United States. A weighted graph is created with the stocks repre- sented by the nodes and the edges’ weights are related to the correlation between the stocks’ time series. A heuristic for clustering is then pro- posed; it is based on the graph partition into disconnected subgraphs allowing the identification of clusters of highly-correlated stocks. The final layout corresponds well with the perceived market notion of the different industrial sectors. We compare the output of this procedure with a traditional dendogram approach of hierarchical clusteringIFIP International Conference on Artificial Intelligence in Theory and Practice - Knowledge Acquisition and Data MiningRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23890enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:37:10Zoai:sedici.unlp.edu.ar:10915/23890Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:37:10.313SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
An automatic graph layout procedure to visualize correlated data |
title |
An automatic graph layout procedure to visualize correlated data |
spellingShingle |
An automatic graph layout procedure to visualize correlated data Moscato, Pablo Ciencias Informáticas Quadratic Assignment Problem (QAP) hierarchical clustering Similarity measures Heuristic methods |
title_short |
An automatic graph layout procedure to visualize correlated data |
title_full |
An automatic graph layout procedure to visualize correlated data |
title_fullStr |
An automatic graph layout procedure to visualize correlated data |
title_full_unstemmed |
An automatic graph layout procedure to visualize correlated data |
title_sort |
An automatic graph layout procedure to visualize correlated data |
dc.creator.none.fl_str_mv |
Moscato, Pablo Inostroza-Ponta, Mario Berretta, Regina Mendes, Alexandre |
author |
Moscato, Pablo |
author_facet |
Moscato, Pablo Inostroza-Ponta, Mario Berretta, Regina Mendes, Alexandre |
author_role |
author |
author2 |
Inostroza-Ponta, Mario Berretta, Regina Mendes, Alexandre |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Quadratic Assignment Problem (QAP) hierarchical clustering Similarity measures Heuristic methods |
topic |
Ciencias Informáticas Quadratic Assignment Problem (QAP) hierarchical clustering Similarity measures Heuristic methods |
dc.description.none.fl_txt_mv |
This paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available. We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation. The methodology is presented using as testbed a time series dataset of the Standard & Poor’s 100, one the leading stock market indicators in the United States. A weighted graph is created with the stocks repre- sented by the nodes and the edges’ weights are related to the correlation between the stocks’ time series. A heuristic for clustering is then pro- posed; it is based on the graph partition into disconnected subgraphs allowing the identification of clusters of highly-correlated stocks. The final layout corresponds well with the perceived market notion of the different industrial sectors. We compare the output of this procedure with a traditional dendogram approach of hierarchical clustering IFIP International Conference on Artificial Intelligence in Theory and Practice - Knowledge Acquisition and Data Mining Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available. We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation. The methodology is presented using as testbed a time series dataset of the Standard & Poor’s 100, one the leading stock market indicators in the United States. A weighted graph is created with the stocks repre- sented by the nodes and the edges’ weights are related to the correlation between the stocks’ time series. A heuristic for clustering is then pro- posed; it is based on the graph partition into disconnected subgraphs allowing the identification of clusters of highly-correlated stocks. The final layout corresponds well with the perceived market notion of the different industrial sectors. We compare the output of this procedure with a traditional dendogram approach of hierarchical clustering |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23890 |
url |
http://sedici.unlp.edu.ar/handle/10915/23890 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1846782832277454848 |
score |
12.982451 |