An automatic graph layout procedure to visualize correlated data

Autores
Moscato, Pablo; Inostroza-Ponta, Mario; Berretta, Regina; Mendes, Alexandre
Año de publicación
2006
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
This paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available. We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation. The methodology is presented using as testbed a time series dataset of the Standard & Poor’s 100, one the leading stock market indicators in the United States. A weighted graph is created with the stocks repre- sented by the nodes and the edges’ weights are related to the correlation between the stocks’ time series. A heuristic for clustering is then pro- posed; it is based on the graph partition into disconnected subgraphs allowing the identification of clusters of highly-correlated stocks. The final layout corresponds well with the perceived market notion of the different industrial sectors. We compare the output of this procedure with a traditional dendogram approach of hierarchical clustering
IFIP International Conference on Artificial Intelligence in Theory and Practice - Knowledge Acquisition and Data Mining
Red de Universidades con Carreras en Informática (RedUNCI)
Materia
Ciencias Informáticas
Quadratic Assignment Problem (QAP)
hierarchical clustering
Similarity measures
Heuristic methods
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/23890

id SEDICI_30dc2d6fb753be533b6d2082dc5085c2
oai_identifier_str oai:sedici.unlp.edu.ar:10915/23890
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling An automatic graph layout procedure to visualize correlated dataMoscato, PabloInostroza-Ponta, MarioBerretta, ReginaMendes, AlexandreCiencias InformáticasQuadratic Assignment Problem (QAP)hierarchical clusteringSimilarity measuresHeuristic methodsThis paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available. We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation. The methodology is presented using as testbed a time series dataset of the Standard & Poor’s 100, one the leading stock market indicators in the United States. A weighted graph is created with the stocks repre- sented by the nodes and the edges’ weights are related to the correlation between the stocks’ time series. A heuristic for clustering is then pro- posed; it is based on the graph partition into disconnected subgraphs allowing the identification of clusters of highly-correlated stocks. The final layout corresponds well with the perceived market notion of the different industrial sectors. We compare the output of this procedure with a traditional dendogram approach of hierarchical clusteringIFIP International Conference on Artificial Intelligence in Theory and Practice - Knowledge Acquisition and Data MiningRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23890enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:37:10Zoai:sedici.unlp.edu.ar:10915/23890Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:37:10.313SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv An automatic graph layout procedure to visualize correlated data
title An automatic graph layout procedure to visualize correlated data
spellingShingle An automatic graph layout procedure to visualize correlated data
Moscato, Pablo
Ciencias Informáticas
Quadratic Assignment Problem (QAP)
hierarchical clustering
Similarity measures
Heuristic methods
title_short An automatic graph layout procedure to visualize correlated data
title_full An automatic graph layout procedure to visualize correlated data
title_fullStr An automatic graph layout procedure to visualize correlated data
title_full_unstemmed An automatic graph layout procedure to visualize correlated data
title_sort An automatic graph layout procedure to visualize correlated data
dc.creator.none.fl_str_mv Moscato, Pablo
Inostroza-Ponta, Mario
Berretta, Regina
Mendes, Alexandre
author Moscato, Pablo
author_facet Moscato, Pablo
Inostroza-Ponta, Mario
Berretta, Regina
Mendes, Alexandre
author_role author
author2 Inostroza-Ponta, Mario
Berretta, Regina
Mendes, Alexandre
author2_role author
author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
Quadratic Assignment Problem (QAP)
hierarchical clustering
Similarity measures
Heuristic methods
topic Ciencias Informáticas
Quadratic Assignment Problem (QAP)
hierarchical clustering
Similarity measures
Heuristic methods
dc.description.none.fl_txt_mv This paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available. We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation. The methodology is presented using as testbed a time series dataset of the Standard & Poor’s 100, one the leading stock market indicators in the United States. A weighted graph is created with the stocks repre- sented by the nodes and the edges’ weights are related to the correlation between the stocks’ time series. A heuristic for clustering is then pro- posed; it is based on the graph partition into disconnected subgraphs allowing the identification of clusters of highly-correlated stocks. The final layout corresponds well with the perceived market notion of the different industrial sectors. We compare the output of this procedure with a traditional dendogram approach of hierarchical clustering
IFIP International Conference on Artificial Intelligence in Theory and Practice - Knowledge Acquisition and Data Mining
Red de Universidades con Carreras en Informática (RedUNCI)
description This paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available. We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation. The methodology is presented using as testbed a time series dataset of the Standard & Poor’s 100, one the leading stock market indicators in the United States. A weighted graph is created with the stocks repre- sented by the nodes and the edges’ weights are related to the correlation between the stocks’ time series. A heuristic for clustering is then pro- posed; it is based on the graph partition into disconnected subgraphs allowing the identification of clusters of highly-correlated stocks. The final layout corresponds well with the perceived market notion of the different industrial sectors. We compare the output of this procedure with a traditional dendogram approach of hierarchical clustering
publishDate 2006
dc.date.none.fl_str_mv 2006-08
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Objeto de conferencia
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/23890
url http://sedici.unlp.edu.ar/handle/10915/23890
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1846782832277454848
score 12.982451