Conducción autónoma para tareas de logística basada en visión por computadora y Deep Learning
- Autores
- Cesaratto, L. A.; Bazzano, N. R.
- Año de publicación
- 2020
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- En el presente trabajo se propone el desarrollo de un prototipo a escala de un vehículo autónomo para tareas de logística en un depósito industrial. Para ello, se combinan técnicas avanzadas de procesamiento de imágenes basadas en visión artificial y técnicas de Deep Learning para el reconocimiento de objetos. El vehículo tiene la capacidad de identificar paquetes mediante códigos QR y de llevarlos hasta el depósito correspondiente. Una vez concluida dicha tarea, retorna a la base de forma automática a la espera de un nuevo paquete. Para ensayar el correcto funcionamiento del vehículo, se diseñó una pista de prueba, en la cual el vehículo debe reconocer el paquete a transportar, y siguiendo una línea de guía, busca el depósito correspondiente al paquete recibido. Para realizar dicha búsqueda, identifica distintos carteles con códigos QR en su trayectoria, y carteles numéricos sobre las bocacalles principales mediante Deep Learning. Una vez que llega al depósito, se posiciona de forma alineada con la calle y se aproxima a la línea identificatoria. Cabe destacar que, además, el vehículo es capaz de reconocer un semáforo peatonal.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Conducción autónoma
Deep learning
Computer vision - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/3.0/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/115882
Ver los metadatos del registro completo
| id |
SEDICI_30976bf5faf585d6b9e07fcac3d86181 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/115882 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Conducción autónoma para tareas de logística basada en visión por computadora y Deep LearningCesaratto, L. A.Bazzano, N. R.Ciencias InformáticasConducción autónomaDeep learningComputer visionEn el presente trabajo se propone el desarrollo de un prototipo a escala de un vehículo autónomo para tareas de logística en un depósito industrial. Para ello, se combinan técnicas avanzadas de procesamiento de imágenes basadas en visión artificial y técnicas de Deep Learning para el reconocimiento de objetos. El vehículo tiene la capacidad de identificar paquetes mediante códigos QR y de llevarlos hasta el depósito correspondiente. Una vez concluida dicha tarea, retorna a la base de forma automática a la espera de un nuevo paquete. Para ensayar el correcto funcionamiento del vehículo, se diseñó una pista de prueba, en la cual el vehículo debe reconocer el paquete a transportar, y siguiendo una línea de guía, busca el depósito correspondiente al paquete recibido. Para realizar dicha búsqueda, identifica distintos carteles con códigos QR en su trayectoria, y carteles numéricos sobre las bocacalles principales mediante Deep Learning. Una vez que llega al depósito, se posiciona de forma alineada con la calle y se aproxima a la línea identificatoria. Cabe destacar que, además, el vehículo es capaz de reconocer un semáforo peatonal.Sociedad Argentina de Informática e Investigación Operativa2020-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf26-49http://sedici.unlp.edu.ar/handle/10915/115882spainfo:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/est/EST-02.pdfinfo:eu-repo/semantics/altIdentifier/issn/2451-7615info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/3.0/Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-15T11:18:53Zoai:sedici.unlp.edu.ar:10915/115882Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-15 11:18:53.347SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Conducción autónoma para tareas de logística basada en visión por computadora y Deep Learning |
| title |
Conducción autónoma para tareas de logística basada en visión por computadora y Deep Learning |
| spellingShingle |
Conducción autónoma para tareas de logística basada en visión por computadora y Deep Learning Cesaratto, L. A. Ciencias Informáticas Conducción autónoma Deep learning Computer vision |
| title_short |
Conducción autónoma para tareas de logística basada en visión por computadora y Deep Learning |
| title_full |
Conducción autónoma para tareas de logística basada en visión por computadora y Deep Learning |
| title_fullStr |
Conducción autónoma para tareas de logística basada en visión por computadora y Deep Learning |
| title_full_unstemmed |
Conducción autónoma para tareas de logística basada en visión por computadora y Deep Learning |
| title_sort |
Conducción autónoma para tareas de logística basada en visión por computadora y Deep Learning |
| dc.creator.none.fl_str_mv |
Cesaratto, L. A. Bazzano, N. R. |
| author |
Cesaratto, L. A. |
| author_facet |
Cesaratto, L. A. Bazzano, N. R. |
| author_role |
author |
| author2 |
Bazzano, N. R. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Conducción autónoma Deep learning Computer vision |
| topic |
Ciencias Informáticas Conducción autónoma Deep learning Computer vision |
| dc.description.none.fl_txt_mv |
En el presente trabajo se propone el desarrollo de un prototipo a escala de un vehículo autónomo para tareas de logística en un depósito industrial. Para ello, se combinan técnicas avanzadas de procesamiento de imágenes basadas en visión artificial y técnicas de Deep Learning para el reconocimiento de objetos. El vehículo tiene la capacidad de identificar paquetes mediante códigos QR y de llevarlos hasta el depósito correspondiente. Una vez concluida dicha tarea, retorna a la base de forma automática a la espera de un nuevo paquete. Para ensayar el correcto funcionamiento del vehículo, se diseñó una pista de prueba, en la cual el vehículo debe reconocer el paquete a transportar, y siguiendo una línea de guía, busca el depósito correspondiente al paquete recibido. Para realizar dicha búsqueda, identifica distintos carteles con códigos QR en su trayectoria, y carteles numéricos sobre las bocacalles principales mediante Deep Learning. Una vez que llega al depósito, se posiciona de forma alineada con la calle y se aproxima a la línea identificatoria. Cabe destacar que, además, el vehículo es capaz de reconocer un semáforo peatonal. Sociedad Argentina de Informática e Investigación Operativa |
| description |
En el presente trabajo se propone el desarrollo de un prototipo a escala de un vehículo autónomo para tareas de logística en un depósito industrial. Para ello, se combinan técnicas avanzadas de procesamiento de imágenes basadas en visión artificial y técnicas de Deep Learning para el reconocimiento de objetos. El vehículo tiene la capacidad de identificar paquetes mediante códigos QR y de llevarlos hasta el depósito correspondiente. Una vez concluida dicha tarea, retorna a la base de forma automática a la espera de un nuevo paquete. Para ensayar el correcto funcionamiento del vehículo, se diseñó una pista de prueba, en la cual el vehículo debe reconocer el paquete a transportar, y siguiendo una línea de guía, busca el depósito correspondiente al paquete recibido. Para realizar dicha búsqueda, identifica distintos carteles con códigos QR en su trayectoria, y carteles numéricos sobre las bocacalles principales mediante Deep Learning. Una vez que llega al depósito, se posiciona de forma alineada con la calle y se aproxima a la línea identificatoria. Cabe destacar que, además, el vehículo es capaz de reconocer un semáforo peatonal. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/115882 |
| url |
http://sedici.unlp.edu.ar/handle/10915/115882 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://49jaiio.sadio.org.ar/pdfs/est/EST-02.pdf info:eu-repo/semantics/altIdentifier/issn/2451-7615 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/3.0/ Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) |
| dc.format.none.fl_str_mv |
application/pdf 26-49 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846064246769582080 |
| score |
13.22299 |