A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q)
- Autores
- Arnone, Leonardo; Castiñeira Moreira, Jorge; Gayoso, Carlos; González, Claudio; Rabini, Miguel
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper, we present a low complexity Sum-Subtract decoder for non-binary LDPC codes defined over GF(q). The performance of this decoding algorithm is similar to that of the Fast Fourier Transform Sum-Product algorithm usually utilized for decoding non-binary LDPC codes. It is a simplified algorithm that can be easily implemented on programmable logic technology such as FPGA devices because of its use of only additions and subtractions, avoiding the use of quotients and products, and of float point arithmetic. The algorithm yields a very low complexity programmable logic implementation of an NB-LDPC decoder with an excellent BER performance.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
Galois fields
non-binary LDPC codes
programmable logic technology - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/152747
Ver los metadatos del registro completo
id |
SEDICI_3034470de3b549453921b39de35b6199 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/152747 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q)Arnone, LeonardoCastiñeira Moreira, JorgeGayoso, CarlosGonzález, ClaudioRabini, MiguelCiencias InformáticasGalois fieldsnon-binary LDPC codesprogrammable logic technologyIn this paper, we present a low complexity Sum-Subtract decoder for non-binary LDPC codes defined over GF(q). The performance of this decoding algorithm is similar to that of the Fast Fourier Transform Sum-Product algorithm usually utilized for decoding non-binary LDPC codes. It is a simplified algorithm that can be easily implemented on programmable logic technology such as FPGA devices because of its use of only additions and subtractions, avoiding the use of quotients and products, and of float point arithmetic. The algorithm yields a very low complexity programmable logic implementation of an NB-LDPC decoder with an excellent BER performance.Sociedad Argentina de Informática e Investigación Operativa2010info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1751-1758http://sedici.unlp.edu.ar/handle/10915/152747enginfo:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39-jaiio-ast-22.pdfinfo:eu-repo/semantics/altIdentifier/issn/1850-2806info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T11:11:24Zoai:sedici.unlp.edu.ar:10915/152747Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 11:11:24.533SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q) |
title |
A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q) |
spellingShingle |
A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q) Arnone, Leonardo Ciencias Informáticas Galois fields non-binary LDPC codes programmable logic technology |
title_short |
A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q) |
title_full |
A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q) |
title_fullStr |
A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q) |
title_full_unstemmed |
A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q) |
title_sort |
A Low Complexity Sum-Subtract Decoding Algorithm for Non-Binary LDPC Codes over GF(q) |
dc.creator.none.fl_str_mv |
Arnone, Leonardo Castiñeira Moreira, Jorge Gayoso, Carlos González, Claudio Rabini, Miguel |
author |
Arnone, Leonardo |
author_facet |
Arnone, Leonardo Castiñeira Moreira, Jorge Gayoso, Carlos González, Claudio Rabini, Miguel |
author_role |
author |
author2 |
Castiñeira Moreira, Jorge Gayoso, Carlos González, Claudio Rabini, Miguel |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Galois fields non-binary LDPC codes programmable logic technology |
topic |
Ciencias Informáticas Galois fields non-binary LDPC codes programmable logic technology |
dc.description.none.fl_txt_mv |
In this paper, we present a low complexity Sum-Subtract decoder for non-binary LDPC codes defined over GF(q). The performance of this decoding algorithm is similar to that of the Fast Fourier Transform Sum-Product algorithm usually utilized for decoding non-binary LDPC codes. It is a simplified algorithm that can be easily implemented on programmable logic technology such as FPGA devices because of its use of only additions and subtractions, avoiding the use of quotients and products, and of float point arithmetic. The algorithm yields a very low complexity programmable logic implementation of an NB-LDPC decoder with an excellent BER performance. Sociedad Argentina de Informática e Investigación Operativa |
description |
In this paper, we present a low complexity Sum-Subtract decoder for non-binary LDPC codes defined over GF(q). The performance of this decoding algorithm is similar to that of the Fast Fourier Transform Sum-Product algorithm usually utilized for decoding non-binary LDPC codes. It is a simplified algorithm that can be easily implemented on programmable logic technology such as FPGA devices because of its use of only additions and subtractions, avoiding the use of quotients and products, and of float point arithmetic. The algorithm yields a very low complexity programmable logic implementation of an NB-LDPC decoder with an excellent BER performance. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/152747 |
url |
http://sedici.unlp.edu.ar/handle/10915/152747 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://39jaiio.sadio.org.ar/sites/default/files/39-jaiio-ast-22.pdf info:eu-repo/semantics/altIdentifier/issn/1850-2806 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1751-1758 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260618075176960 |
score |
13.13397 |